MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcvg Structured version   Visualization version   Unicode version

Theorem cmetcvg 23083
Description: The convergence of a Cauchy filter in a complete metric space. (Contributed by Mario Carneiro, 14-Oct-2015.)
Hypothesis
Ref Expression
iscmet.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
cmetcvg  |-  ( ( D  e.  ( CMet `  X )  /\  F  e.  (CauFil `  D )
)  ->  ( J  fLim  F )  =/=  (/) )

Proof of Theorem cmetcvg
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 iscmet.1 . . . 4  |-  J  =  ( MetOpen `  D )
21iscmet 23082 . . 3  |-  ( D  e.  ( CMet `  X
)  <->  ( D  e.  ( Met `  X
)  /\  A. f  e.  (CauFil `  D )
( J  fLim  f
)  =/=  (/) ) )
32simprbi 480 . 2  |-  ( D  e.  ( CMet `  X
)  ->  A. f  e.  (CauFil `  D )
( J  fLim  f
)  =/=  (/) )
4 oveq2 6658 . . . 4  |-  ( f  =  F  ->  ( J  fLim  f )  =  ( J  fLim  F
) )
54neeq1d 2853 . . 3  |-  ( f  =  F  ->  (
( J  fLim  f
)  =/=  (/)  <->  ( J  fLim  F )  =/=  (/) ) )
65rspccva 3308 . 2  |-  ( ( A. f  e.  (CauFil `  D ) ( J 
fLim  f )  =/=  (/)  /\  F  e.  (CauFil `  D ) )  -> 
( J  fLim  F
)  =/=  (/) )
73, 6sylan 488 1  |-  ( ( D  e.  ( CMet `  X )  /\  F  e.  (CauFil `  D )
)  ->  ( J  fLim  F )  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   (/)c0 3915   ` cfv 5888  (class class class)co 6650   Metcme 19732   MetOpencmopn 19736    fLim cflim 21738  CauFilccfil 23050   CMetcms 23052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-cmet 23055
This theorem is referenced by:  cmetcaulem  23086  cmetss  23113  cmetcusp  23150  minveclem4a  23201  fmcncfil  29977
  Copyright terms: Public domain W3C validator