MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet Structured version   Visualization version   Unicode version

Theorem iscmet 23082
Description: The property " D is a complete metric." meaning all Cauchy filters converge to a point in the space. (Contributed by Mario Carneiro, 1-May-2014.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypothesis
Ref Expression
iscmet.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
iscmet  |-  ( D  e.  ( CMet `  X
)  <->  ( D  e.  ( Met `  X
)  /\  A. f  e.  (CauFil `  D )
( J  fLim  f
)  =/=  (/) ) )
Distinct variable groups:    D, f    f, J    f, X

Proof of Theorem iscmet
Dummy variables  d  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6221 . 2  |-  ( D  e.  ( CMet `  X
)  ->  X  e.  _V )
2 elfvex 6221 . . 3  |-  ( D  e.  ( Met `  X
)  ->  X  e.  _V )
32adantr 481 . 2  |-  ( ( D  e.  ( Met `  X )  /\  A. f  e.  (CauFil `  D
) ( J  fLim  f )  =/=  (/) )  ->  X  e.  _V )
4 fveq2 6191 . . . . . 6  |-  ( x  =  X  ->  ( Met `  x )  =  ( Met `  X
) )
5 rabeq 3192 . . . . . 6  |-  ( ( Met `  x )  =  ( Met `  X
)  ->  { d  e.  ( Met `  x
)  |  A. f  e.  (CauFil `  d )
( ( MetOpen `  d
)  fLim  f )  =/=  (/) }  =  {
d  e.  ( Met `  X )  |  A. f  e.  (CauFil `  d
) ( ( MetOpen `  d )  fLim  f
)  =/=  (/) } )
64, 5syl 17 . . . . 5  |-  ( x  =  X  ->  { d  e.  ( Met `  x
)  |  A. f  e.  (CauFil `  d )
( ( MetOpen `  d
)  fLim  f )  =/=  (/) }  =  {
d  e.  ( Met `  X )  |  A. f  e.  (CauFil `  d
) ( ( MetOpen `  d )  fLim  f
)  =/=  (/) } )
7 df-cmet 23055 . . . . 5  |-  CMet  =  ( x  e.  _V  |->  { d  e.  ( Met `  x )  |  A. f  e.  (CauFil `  d )
( ( MetOpen `  d
)  fLim  f )  =/=  (/) } )
8 fvex 6201 . . . . . 6  |-  ( Met `  X )  e.  _V
98rabex 4813 . . . . 5  |-  { d  e.  ( Met `  X
)  |  A. f  e.  (CauFil `  d )
( ( MetOpen `  d
)  fLim  f )  =/=  (/) }  e.  _V
106, 7, 9fvmpt 6282 . . . 4  |-  ( X  e.  _V  ->  ( CMet `  X )  =  { d  e.  ( Met `  X )  |  A. f  e.  (CauFil `  d )
( ( MetOpen `  d
)  fLim  f )  =/=  (/) } )
1110eleq2d 2687 . . 3  |-  ( X  e.  _V  ->  ( D  e.  ( CMet `  X )  <->  D  e.  { d  e.  ( Met `  X )  |  A. f  e.  (CauFil `  d
) ( ( MetOpen `  d )  fLim  f
)  =/=  (/) } ) )
12 fveq2 6191 . . . . 5  |-  ( d  =  D  ->  (CauFil `  d )  =  (CauFil `  D ) )
13 fveq2 6191 . . . . . . . 8  |-  ( d  =  D  ->  ( MetOpen
`  d )  =  ( MetOpen `  D )
)
14 iscmet.1 . . . . . . . 8  |-  J  =  ( MetOpen `  D )
1513, 14syl6eqr 2674 . . . . . . 7  |-  ( d  =  D  ->  ( MetOpen
`  d )  =  J )
1615oveq1d 6665 . . . . . 6  |-  ( d  =  D  ->  (
( MetOpen `  d )  fLim  f )  =  ( J  fLim  f )
)
1716neeq1d 2853 . . . . 5  |-  ( d  =  D  ->  (
( ( MetOpen `  d
)  fLim  f )  =/=  (/)  <->  ( J  fLim  f )  =/=  (/) ) )
1812, 17raleqbidv 3152 . . . 4  |-  ( d  =  D  ->  ( A. f  e.  (CauFil `  d ) ( (
MetOpen `  d )  fLim  f )  =/=  (/)  <->  A. f  e.  (CauFil `  D )
( J  fLim  f
)  =/=  (/) ) )
1918elrab 3363 . . 3  |-  ( D  e.  { d  e.  ( Met `  X
)  |  A. f  e.  (CauFil `  d )
( ( MetOpen `  d
)  fLim  f )  =/=  (/) }  <->  ( D  e.  ( Met `  X
)  /\  A. f  e.  (CauFil `  D )
( J  fLim  f
)  =/=  (/) ) )
2011, 19syl6bb 276 . 2  |-  ( X  e.  _V  ->  ( D  e.  ( CMet `  X )  <->  ( D  e.  ( Met `  X
)  /\  A. f  e.  (CauFil `  D )
( J  fLim  f
)  =/=  (/) ) ) )
211, 3, 20pm5.21nii 368 1  |-  ( D  e.  ( CMet `  X
)  <->  ( D  e.  ( Met `  X
)  /\  A. f  e.  (CauFil `  D )
( J  fLim  f
)  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200   (/)c0 3915   ` cfv 5888  (class class class)co 6650   Metcme 19732   MetOpencmopn 19736    fLim cflim 21738  CauFilccfil 23050   CMetcms 23052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-cmet 23055
This theorem is referenced by:  cmetcvg  23083  cmetmet  23084  iscmet3  23091  cmetss  23113  equivcmet  23114  relcmpcmet  23115  cmetcusp1  23149
  Copyright terms: Public domain W3C validator