| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minveclem4a | Structured version Visualization version Unicode version | ||
| Description: Lemma for minvec 23207. |
| Ref | Expression |
|---|---|
| minvec.x |
|
| minvec.m |
|
| minvec.n |
|
| minvec.u |
|
| minvec.y |
|
| minvec.w |
|
| minvec.a |
|
| minvec.j |
|
| minvec.r |
|
| minvec.s |
|
| minvec.d |
|
| minvec.f |
|
| minvec.p |
|
| Ref | Expression |
|---|---|
| minveclem4a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minvec.p |
. 2
| |
| 2 | ovex 6678 |
. . . . 5
| |
| 3 | 2 | uniex 6953 |
. . . 4
|
| 4 | 3 | snid 4208 |
. . 3
|
| 5 | minvec.u |
. . . . . . . . . . . 12
| |
| 6 | cphngp 22973 |
. . . . . . . . . . . 12
| |
| 7 | ngpxms 22405 |
. . . . . . . . . . . 12
| |
| 8 | 5, 6, 7 | 3syl 18 |
. . . . . . . . . . 11
|
| 9 | minvec.j |
. . . . . . . . . . . 12
| |
| 10 | minvec.x |
. . . . . . . . . . . 12
| |
| 11 | minvec.d |
. . . . . . . . . . . 12
| |
| 12 | 9, 10, 11 | xmstopn 22256 |
. . . . . . . . . . 11
|
| 13 | 8, 12 | syl 17 |
. . . . . . . . . 10
|
| 14 | 13 | oveq1d 6665 |
. . . . . . . . 9
|
| 15 | 10, 11 | xmsxmet 22261 |
. . . . . . . . . . 11
|
| 16 | 8, 15 | syl 17 |
. . . . . . . . . 10
|
| 17 | minvec.y |
. . . . . . . . . . 11
| |
| 18 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 19 | 10, 18 | lssss 18937 |
. . . . . . . . . . 11
|
| 20 | 17, 19 | syl 17 |
. . . . . . . . . 10
|
| 21 | eqid 2622 |
. . . . . . . . . . 11
| |
| 22 | eqid 2622 |
. . . . . . . . . . 11
| |
| 23 | eqid 2622 |
. . . . . . . . . . 11
| |
| 24 | 21, 22, 23 | metrest 22329 |
. . . . . . . . . 10
|
| 25 | 16, 20, 24 | syl2anc 693 |
. . . . . . . . 9
|
| 26 | 14, 25 | eqtr2d 2657 |
. . . . . . . 8
|
| 27 | minvec.m |
. . . . . . . . . . . 12
| |
| 28 | minvec.n |
. . . . . . . . . . . 12
| |
| 29 | minvec.w |
. . . . . . . . . . . 12
| |
| 30 | minvec.a |
. . . . . . . . . . . 12
| |
| 31 | minvec.r |
. . . . . . . . . . . 12
| |
| 32 | minvec.s |
. . . . . . . . . . . 12
| |
| 33 | minvec.f |
. . . . . . . . . . . 12
| |
| 34 | 10, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33 | minveclem3b 23199 |
. . . . . . . . . . 11
|
| 35 | fgcl 21682 |
. . . . . . . . . . 11
| |
| 36 | 34, 35 | syl 17 |
. . . . . . . . . 10
|
| 37 | fvex 6201 |
. . . . . . . . . . . 12
| |
| 38 | 10, 37 | eqeltri 2697 |
. . . . . . . . . . 11
|
| 39 | 38 | a1i 11 |
. . . . . . . . . 10
|
| 40 | trfg 21695 |
. . . . . . . . . 10
| |
| 41 | 36, 20, 39, 40 | syl3anc 1326 |
. . . . . . . . 9
|
| 42 | fgabs 21683 |
. . . . . . . . . . 11
| |
| 43 | 34, 20, 42 | syl2anc 693 |
. . . . . . . . . 10
|
| 44 | 43 | oveq1d 6665 |
. . . . . . . . 9
|
| 45 | 41, 44 | eqtr3d 2658 |
. . . . . . . 8
|
| 46 | 26, 45 | oveq12d 6668 |
. . . . . . 7
|
| 47 | xmstps 22258 |
. . . . . . . . . 10
| |
| 48 | 8, 47 | syl 17 |
. . . . . . . . 9
|
| 49 | 10, 9 | istps 20738 |
. . . . . . . . 9
|
| 50 | 48, 49 | sylib 208 |
. . . . . . . 8
|
| 51 | fbsspw 21636 |
. . . . . . . . . . . 12
| |
| 52 | 34, 51 | syl 17 |
. . . . . . . . . . 11
|
| 53 | sspwb 4917 |
. . . . . . . . . . . 12
| |
| 54 | 20, 53 | sylib 208 |
. . . . . . . . . . 11
|
| 55 | 52, 54 | sstrd 3613 |
. . . . . . . . . 10
|
| 56 | fbasweak 21669 |
. . . . . . . . . 10
| |
| 57 | 34, 55, 39, 56 | syl3anc 1326 |
. . . . . . . . 9
|
| 58 | fgcl 21682 |
. . . . . . . . 9
| |
| 59 | 57, 58 | syl 17 |
. . . . . . . 8
|
| 60 | filfbas 21652 |
. . . . . . . . . . . . 13
| |
| 61 | 34, 35, 60 | 3syl 18 |
. . . . . . . . . . . 12
|
| 62 | fbsspw 21636 |
. . . . . . . . . . . . . 14
| |
| 63 | 61, 62 | syl 17 |
. . . . . . . . . . . . 13
|
| 64 | 63, 54 | sstrd 3613 |
. . . . . . . . . . . 12
|
| 65 | fbasweak 21669 |
. . . . . . . . . . . 12
| |
| 66 | 61, 64, 39, 65 | syl3anc 1326 |
. . . . . . . . . . 11
|
| 67 | ssfg 21676 |
. . . . . . . . . . 11
| |
| 68 | 66, 67 | syl 17 |
. . . . . . . . . 10
|
| 69 | 68, 43 | sseqtrd 3641 |
. . . . . . . . 9
|
| 70 | filtop 21659 |
. . . . . . . . . 10
| |
| 71 | 36, 70 | syl 17 |
. . . . . . . . 9
|
| 72 | 69, 71 | sseldd 3604 |
. . . . . . . 8
|
| 73 | flimrest 21787 |
. . . . . . . 8
| |
| 74 | 50, 59, 72, 73 | syl3anc 1326 |
. . . . . . 7
|
| 75 | 46, 74 | eqtrd 2656 |
. . . . . 6
|
| 76 | 10, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11 | minveclem3a 23198 |
. . . . . . 7
|
| 77 | 10, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33 | minveclem3 23200 |
. . . . . . 7
|
| 78 | 23 | cmetcvg 23083 |
. . . . . . 7
|
| 79 | 76, 77, 78 | syl2anc 693 |
. . . . . 6
|
| 80 | 75, 79 | eqnetrrd 2862 |
. . . . 5
|
| 81 | 80 | neneqd 2799 |
. . . 4
|
| 82 | inss1 3833 |
. . . . . . 7
| |
| 83 | 22 | methaus 22325 |
. . . . . . . . . . . . 13
|
| 84 | 15, 83 | syl 17 |
. . . . . . . . . . . 12
|
| 85 | 12, 84 | eqeltrd 2701 |
. . . . . . . . . . 11
|
| 86 | hausflimi 21784 |
. . . . . . . . . . 11
| |
| 87 | 8, 85, 86 | 3syl 18 |
. . . . . . . . . 10
|
| 88 | ssn0 3976 |
. . . . . . . . . . . 12
| |
| 89 | 82, 80, 88 | sylancr 695 |
. . . . . . . . . . 11
|
| 90 | n0moeu 3937 |
. . . . . . . . . . 11
| |
| 91 | 89, 90 | syl 17 |
. . . . . . . . . 10
|
| 92 | 87, 91 | mpbid 222 |
. . . . . . . . 9
|
| 93 | euen1b 8027 |
. . . . . . . . 9
| |
| 94 | 92, 93 | sylibr 224 |
. . . . . . . 8
|
| 95 | en1b 8024 |
. . . . . . . 8
| |
| 96 | 94, 95 | sylib 208 |
. . . . . . 7
|
| 97 | 82, 96 | syl5sseq 3653 |
. . . . . 6
|
| 98 | sssn 4358 |
. . . . . 6
| |
| 99 | 97, 98 | sylib 208 |
. . . . 5
|
| 100 | 99 | ord 392 |
. . . 4
|
| 101 | 81, 100 | mpd 15 |
. . 3
|
| 102 | 4, 101 | syl5eleqr 2708 |
. 2
|
| 103 | 1, 102 | syl5eqel 2705 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fi 8317 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ico 12181 df-icc 12182 df-fz 12327 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-rest 16083 df-0g 16102 df-topgen 16104 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mulg 17541 df-subg 17591 df-ghm 17658 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-rnghom 18715 df-drng 18749 df-subrg 18778 df-staf 18845 df-srng 18846 df-lmod 18865 df-lss 18933 df-lmhm 19022 df-lvec 19103 df-sra 19172 df-rgmod 19173 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-fbas 19743 df-fg 19744 df-cnfld 19747 df-phl 19971 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-ntr 20824 df-nei 20902 df-haus 21119 df-fil 21650 df-flim 21743 df-xms 22125 df-ms 22126 df-nm 22387 df-ngp 22388 df-nlm 22391 df-clm 22863 df-cph 22968 df-cfil 23053 df-cmet 23055 df-cms 23132 |
| This theorem is referenced by: minveclem4b 23202 minveclem4 23203 |
| Copyright terms: Public domain | W3C validator |