MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcaulem Structured version   Visualization version   Unicode version

Theorem cmetcaulem 23086
Description: Lemma for cmetcau 23087. (Contributed by Mario Carneiro, 14-Oct-2015.)
Hypotheses
Ref Expression
cmetcau.1  |-  J  =  ( MetOpen `  D )
cmetcau.3  |-  ( ph  ->  D  e.  ( CMet `  X ) )
cmetcau.4  |-  ( ph  ->  P  e.  X )
cmetcau.5  |-  ( ph  ->  F  e.  ( Cau `  D ) )
cmetcau.6  |-  G  =  ( x  e.  NN  |->  if ( x  e.  dom  F ,  ( F `  x ) ,  P
) )
Assertion
Ref Expression
cmetcaulem  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
Distinct variable groups:    x, D    x, F    x, P    x, J    ph, x    x, X
Allowed substitution hint:    G( x)

Proof of Theorem cmetcaulem
Dummy variables  j 
k  m  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmetcau.3 . . . . . . . . 9  |-  ( ph  ->  D  e.  ( CMet `  X ) )
2 cmetmet 23084 . . . . . . . . 9  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
31, 2syl 17 . . . . . . . 8  |-  ( ph  ->  D  e.  ( Met `  X ) )
4 metxmet 22139 . . . . . . . 8  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
53, 4syl 17 . . . . . . 7  |-  ( ph  ->  D  e.  ( *Met `  X ) )
6 cmetcau.1 . . . . . . . 8  |-  J  =  ( MetOpen `  D )
76mopntopon 22244 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
85, 7syl 17 . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  X ) )
9 1z 11407 . . . . . . . 8  |-  1  e.  ZZ
10 nnuz 11723 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
1110uzfbas 21702 . . . . . . . 8  |-  ( 1  e.  ZZ  ->  ( ZZ>=
" NN )  e.  ( fBas `  NN ) )
129, 11mp1i 13 . . . . . . 7  |-  ( ph  ->  ( ZZ>= " NN )  e.  ( fBas `  NN ) )
13 fgcl 21682 . . . . . . 7  |-  ( (
ZZ>= " NN )  e.  ( fBas `  NN )  ->  ( NN filGen (
ZZ>= " NN ) )  e.  ( Fil `  NN ) )
1412, 13syl 17 . . . . . 6  |-  ( ph  ->  ( NN filGen ( ZZ>= " NN ) )  e.  ( Fil `  NN ) )
15 elfvdm 6220 . . . . . . . . . . . 12  |-  ( D  e.  ( CMet `  X
)  ->  X  e.  dom  CMet )
161, 15syl 17 . . . . . . . . . . 11  |-  ( ph  ->  X  e.  dom  CMet )
17 cnex 10017 . . . . . . . . . . . 12  |-  CC  e.  _V
1817a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  CC  e.  _V )
19 cmetcau.5 . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  ( Cau `  D ) )
20 caufpm 23080 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  D ) )  ->  F  e.  ( X  ^pm  CC ) )
215, 19, 20syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
22 elpm2g 7874 . . . . . . . . . . . 12  |-  ( ( X  e.  dom  CMet  /\  CC  e.  _V )  ->  ( F  e.  ( X  ^pm  CC )  <->  ( F : dom  F --> X  /\  dom  F  C_  CC ) ) )
2322simprbda 653 . . . . . . . . . . 11  |-  ( ( ( X  e.  dom  CMet  /\  CC  e.  _V )  /\  F  e.  ( X  ^pm  CC ) )  ->  F : dom  F --> X )
2416, 18, 21, 23syl21anc 1325 . . . . . . . . . 10  |-  ( ph  ->  F : dom  F --> X )
2524adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  NN )  ->  F : dom  F --> X )
2625ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  NN )  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  X )
27 cmetcau.4 . . . . . . . . 9  |-  ( ph  ->  P  e.  X )
2827ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  NN )  /\  -.  x  e.  dom  F )  ->  P  e.  X
)
2926, 28ifclda 4120 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  if ( x  e.  dom  F ,  ( F `  x ) ,  P
)  e.  X )
30 cmetcau.6 . . . . . . 7  |-  G  =  ( x  e.  NN  |->  if ( x  e.  dom  F ,  ( F `  x ) ,  P
) )
3129, 30fmptd 6385 . . . . . 6  |-  ( ph  ->  G : NN --> X )
32 flfval 21794 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  ( NN filGen ( ZZ>= " NN ) )  e.  ( Fil `  NN )  /\  G : NN --> X )  ->  (
( J  fLimf  ( NN
filGen ( ZZ>= " NN ) ) ) `  G )  =  ( J  fLim  ( ( X  FilMap  G ) `
 ( NN filGen (
ZZ>= " NN ) ) ) ) )
338, 14, 31, 32syl3anc 1326 . . . . 5  |-  ( ph  ->  ( ( J  fLimf  ( NN filGen ( ZZ>= " NN ) ) ) `  G )  =  ( J  fLim  ( ( X  FilMap  G ) `  ( NN filGen ( ZZ>= " NN ) ) ) ) )
34 eqid 2622 . . . . . . . 8  |-  ( NN
filGen ( ZZ>= " NN ) )  =  ( NN filGen (
ZZ>= " NN ) )
3534fmfg 21753 . . . . . . 7  |-  ( ( X  e.  dom  CMet  /\  ( ZZ>= " NN )  e.  ( fBas `  NN )  /\  G : NN --> X )  ->  (
( X  FilMap  G ) `
 ( ZZ>= " NN ) )  =  ( ( X  FilMap  G ) `
 ( NN filGen (
ZZ>= " NN ) ) ) )
3616, 12, 31, 35syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ( X  FilMap  G ) `  ( ZZ>= " NN ) )  =  ( ( X  FilMap  G ) `
 ( NN filGen (
ZZ>= " NN ) ) ) )
3736oveq2d 6666 . . . . 5  |-  ( ph  ->  ( J  fLim  (
( X  FilMap  G ) `
 ( ZZ>= " NN ) ) )  =  ( J  fLim  (
( X  FilMap  G ) `
 ( NN filGen (
ZZ>= " NN ) ) ) ) )
3833, 37eqtr4d 2659 . . . 4  |-  ( ph  ->  ( ( J  fLimf  ( NN filGen ( ZZ>= " NN ) ) ) `  G )  =  ( J  fLim  ( ( X  FilMap  G ) `  ( ZZ>= " NN ) ) ) )
39 1rp 11836 . . . . . . . 8  |-  1  e.  RR+
40 1zzd 11408 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  ZZ )
4110, 5, 40iscau3 23076 . . . . . . . . . . 11  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. w  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  w ) )  < 
z ) ) ) )
4241simplbda 654 . . . . . . . . . 10  |-  ( (
ph  /\  F  e.  ( Cau `  D ) )  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. w  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 w ) )  <  z ) )
4319, 42mpdan 702 . . . . . . . . 9  |-  ( ph  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. w  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  w ) )  < 
z ) )
44 simp1 1061 . . . . . . . . . . . 12  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. w  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  w ) )  < 
z )  ->  k  e.  dom  F )
4544ralimi 2952 . . . . . . . . . . 11  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. w  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  w ) )  < 
z )  ->  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F
)
4645reximi 3011 . . . . . . . . . 10  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. w  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  w ) )  < 
z )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F
)
4746ralimi 2952 . . . . . . . . 9  |-  ( A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. w  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 w ) )  <  z )  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F
)
4843, 47syl 17 . . . . . . . 8  |-  ( ph  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) k  e. 
dom  F )
49 biidd 252 . . . . . . . . 9  |-  ( z  =  1  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) k  e. 
dom  F  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) k  e. 
dom  F ) )
5049rspcv 3305 . . . . . . . 8  |-  ( 1  e.  RR+  ->  ( A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) k  e. 
dom  F ) )
5139, 48, 50mpsyl 68 . . . . . . 7  |-  ( ph  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) k  e. 
dom  F )
52 dfss3 3592 . . . . . . . . 9  |-  ( (
ZZ>= `  j )  C_  dom  F  <->  A. k  e.  (
ZZ>= `  j ) k  e.  dom  F )
53 nnsscn 11025 . . . . . . . . . . . . . 14  |-  NN  C_  CC
5431, 53jctir 561 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G : NN --> X  /\  NN  C_  CC ) )
55 elpm2r 7875 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  dom  CMet  /\  CC  e.  _V )  /\  ( G : NN --> X  /\  NN  C_  CC ) )  ->  G  e.  ( X  ^pm  CC ) )
5616, 18, 54, 55syl21anc 1325 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  ( X 
^pm  CC ) )
5756adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  G  e.  ( X  ^pm  CC ) )
58 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  j )  =  (
ZZ>= `  j )
595adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  D  e.  ( *Met `  X ) )
60 nnz 11399 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN  ->  j  e.  ZZ )
6160ad2antrl 764 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  j  e.  ZZ )
62 eqidd 2623 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( F `  k )  =  ( F `  k ) )
63 eqidd 2623 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  ( F `  m )  =  ( F `  m ) )
6458, 59, 61, 62, 63iscau4 23077 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  ( F  e.  ( Cau `  D )  <->  ( F  e.  ( X  ^pm  CC )  /\  A. z  e.  RR+  E. m  e.  (
ZZ>= `  j ) A. k  e.  ( ZZ>= `  m ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 m ) )  <  z ) ) ) )
6564simplbda 654 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  F  e.  ( Cau `  D ) )  ->  A. z  e.  RR+  E. m  e.  ( ZZ>= `  j ) A. k  e.  ( ZZ>=
`  m ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z ) )
6619, 65mpidan 704 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  A. z  e.  RR+  E. m  e.  ( ZZ>= `  j ) A. k  e.  ( ZZ>=
`  m ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z ) )
67 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  j  e.  NN )
68 eluznn 11758 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  NN  /\  m  e.  ( ZZ>= `  j ) )  ->  m  e.  NN )
6967, 68sylan 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  m  e.  NN )
70 eluznn 11758 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  e.  NN  /\  k  e.  ( ZZ>= `  m ) )  -> 
k  e.  NN )
7130, 29dmmptd 6024 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  dom  G  =  NN )
7271adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  dom  G  =  NN )
7372eleq2d 2687 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  (
k  e.  dom  G  <->  k  e.  NN ) )
7473biimpar 502 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  k  e.  NN )  ->  k  e.  dom  G )
7574a1d 25 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  k  e.  NN )  ->  ( k  e. 
dom  F  ->  k  e. 
dom  G ) )
76 idd 24 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  k  e.  NN )  ->  ( ( F `
 k )  e.  X  ->  ( F `  k )  e.  X
) )
77 idd 24 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  k  e.  NN )  ->  ( ( ( F `  k ) D ( F `  m ) )  < 
z  ->  ( ( F `  k ) D ( F `  m ) )  < 
z ) )
7875, 76, 773anim123d 1406 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  k  e.  NN )  ->  ( ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 m ) )  <  z )  -> 
( k  e.  dom  G  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z ) ) )
7970, 78sylan2 491 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  ( m  e.  NN  /\  k  e.  ( ZZ>= `  m )
) )  ->  (
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z )  ->  ( k  e. 
dom  G  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 m ) )  <  z ) ) )
8079anassrs 680 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  m  e.  NN )  /\  k  e.  (
ZZ>= `  m ) )  ->  ( ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 m ) )  <  z )  -> 
( k  e.  dom  G  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z ) ) )
8180ralimdva 2962 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  m  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  m )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z )  ->  A. k  e.  (
ZZ>= `  m ) ( k  e.  dom  G  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z ) ) )
8269, 81syldan 487 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  ( A. k  e.  ( ZZ>= `  m )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z )  ->  A. k  e.  (
ZZ>= `  m ) ( k  e.  dom  G  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z ) ) )
8382reximdva 3017 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  ( E. m  e.  ( ZZ>=
`  j ) A. k  e.  ( ZZ>= `  m ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 m ) )  <  z )  ->  E. m  e.  ( ZZ>=
`  j ) A. k  e.  ( ZZ>= `  m ) ( k  e.  dom  G  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 m ) )  <  z ) ) )
8483ralimdv 2963 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  ( A. z  e.  RR+  E. m  e.  ( ZZ>= `  j ) A. k  e.  ( ZZ>=
`  m ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z )  ->  A. z  e.  RR+  E. m  e.  ( ZZ>= `  j ) A. k  e.  ( ZZ>= `  m )
( k  e.  dom  G  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z ) ) )
8566, 84mpd 15 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  A. z  e.  RR+  E. m  e.  ( ZZ>= `  j ) A. k  e.  ( ZZ>=
`  m ) ( k  e.  dom  G  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z ) )
86 eluznn 11758 . . . . . . . . . . . . . 14  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
8767, 86sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  k  e.  NN )
88 simprr 796 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  ( ZZ>=
`  j )  C_  dom  F )
8988sselda 3603 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  k  e.  dom  F )
90 iftrue 4092 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  dom  F  ->  if ( k  e.  dom  F ,  ( F `  k ) ,  P
)  =  ( F `
 k ) )
9190adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  NN  /\  k  e.  dom  F )  ->  if ( k  e.  dom  F , 
( F `  k
) ,  P )  =  ( F `  k ) )
92 fvex 6201 . . . . . . . . . . . . . . . 16  |-  ( F `
 k )  e. 
_V
9391, 92syl6eqel 2709 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN  /\  k  e.  dom  F )  ->  if ( k  e.  dom  F , 
( F `  k
) ,  P )  e.  _V )
94 eleq1 2689 . . . . . . . . . . . . . . . . 17  |-  ( x  =  k  ->  (
x  e.  dom  F  <->  k  e.  dom  F ) )
95 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
9694, 95ifbieq1d 4109 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  if ( x  e.  dom  F ,  ( F `  x ) ,  P
)  =  if ( k  e.  dom  F ,  ( F `  k ) ,  P
) )
9796, 30fvmptg 6280 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN  /\  if ( k  e.  dom  F ,  ( F `  k ) ,  P
)  e.  _V )  ->  ( G `  k
)  =  if ( k  e.  dom  F ,  ( F `  k ) ,  P
) )
9893, 97syldan 487 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  k  e.  dom  F )  ->  ( G `  k )  =  if ( k  e.  dom  F ,  ( F `  k ) ,  P
) )
9998, 91eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN  /\  k  e.  dom  F )  ->  ( G `  k )  =  ( F `  k ) )
10087, 89, 99syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( G `  k )  =  ( F `  k ) )
10188sselda 3603 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  m  e.  dom  F )
10269, 101elind 3798 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  m  e.  ( NN  i^i  dom  F
) )
103 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( k  =  m  ->  ( G `  k )  =  ( G `  m ) )
104 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
105103, 104eqeq12d 2637 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  (
( G `  k
)  =  ( F `
 k )  <->  ( G `  m )  =  ( F `  m ) ) )
106 elin 3796 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( NN  i^i  dom 
F )  <->  ( k  e.  NN  /\  k  e. 
dom  F ) )
107106, 99sylbi 207 . . . . . . . . . . . . . 14  |-  ( k  e.  ( NN  i^i  dom 
F )  ->  ( G `  k )  =  ( F `  k ) )
108105, 107vtoclga 3272 . . . . . . . . . . . . 13  |-  ( m  e.  ( NN  i^i  dom 
F )  ->  ( G `  m )  =  ( F `  m ) )
109102, 108syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  ( G `  m )  =  ( F `  m ) )
11058, 59, 61, 100, 109iscau4 23077 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  ( G  e.  ( Cau `  D )  <->  ( G  e.  ( X  ^pm  CC )  /\  A. z  e.  RR+  E. m  e.  (
ZZ>= `  j ) A. k  e.  ( ZZ>= `  m ) ( k  e.  dom  G  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 m ) )  <  z ) ) ) )
11157, 85, 110mpbir2and 957 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  G  e.  ( Cau `  D
) )
112111expr 643 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN )  ->  ( (
ZZ>= `  j )  C_  dom  F  ->  G  e.  ( Cau `  D ) ) )
11352, 112syl5bir 233 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j ) k  e. 
dom  F  ->  G  e.  ( Cau `  D
) ) )
114113rexlimdva 3031 . . . . . . 7  |-  ( ph  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F  ->  G  e.  ( Cau `  D ) ) )
11551, 114mpd 15 . . . . . 6  |-  ( ph  ->  G  e.  ( Cau `  D ) )
116 eqid 2622 . . . . . . . 8  |-  ( ( X  FilMap  G ) `  ( ZZ>= " NN ) )  =  ( ( X 
FilMap  G ) `  ( ZZ>=
" NN ) )
11710, 116caucfil 23081 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  1  e.  ZZ  /\  G : NN --> X )  ->  ( G  e.  ( Cau `  D
)  <->  ( ( X 
FilMap  G ) `  ( ZZ>=
" NN ) )  e.  (CauFil `  D
) ) )
1185, 40, 31, 117syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( G  e.  ( Cau `  D )  <-> 
( ( X  FilMap  G ) `  ( ZZ>= " NN ) )  e.  (CauFil `  D ) ) )
119115, 118mpbid 222 . . . . 5  |-  ( ph  ->  ( ( X  FilMap  G ) `  ( ZZ>= " NN ) )  e.  (CauFil `  D ) )
1206cmetcvg 23083 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  (
( X  FilMap  G ) `
 ( ZZ>= " NN ) )  e.  (CauFil `  D ) )  -> 
( J  fLim  (
( X  FilMap  G ) `
 ( ZZ>= " NN ) ) )  =/=  (/) )
1211, 119, 120syl2anc 693 . . . 4  |-  ( ph  ->  ( J  fLim  (
( X  FilMap  G ) `
 ( ZZ>= " NN ) ) )  =/=  (/) )
12238, 121eqnetrd 2861 . . 3  |-  ( ph  ->  ( ( J  fLimf  ( NN filGen ( ZZ>= " NN ) ) ) `  G )  =/=  (/) )
123 n0 3931 . . 3  |-  ( ( ( J  fLimf  ( NN
filGen ( ZZ>= " NN ) ) ) `  G )  =/=  (/)  <->  E. y  y  e.  ( ( J  fLimf  ( NN filGen ( ZZ>= " NN ) ) ) `  G ) )
124122, 123sylib 208 . 2  |-  ( ph  ->  E. y  y  e.  ( ( J  fLimf  ( NN filGen ( ZZ>= " NN ) ) ) `  G ) )
12510, 34lmflf 21809 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  1  e.  ZZ  /\  G : NN
--> X )  ->  ( G ( ~~> t `  J ) y  <->  y  e.  ( ( J  fLimf  ( NN filGen ( ZZ>= " NN ) ) ) `  G ) ) )
1268, 40, 31, 125syl3anc 1326 . . . 4  |-  ( ph  ->  ( G ( ~~> t `  J ) y  <->  y  e.  ( ( J  fLimf  ( NN filGen ( ZZ>= " NN ) ) ) `  G ) ) )
12721adantr 481 . . . . . . 7  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  F  e.  ( X  ^pm  CC ) )
128 lmcl 21101 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  G
( ~~> t `  J
) y )  -> 
y  e.  X )
1298, 128sylan 488 . . . . . . 7  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  y  e.  X )
1306, 5, 10, 40lmmbr3 23058 . . . . . . . . . 10  |-  ( ph  ->  ( G ( ~~> t `  J ) y  <->  ( G  e.  ( X  ^pm  CC )  /\  y  e.  X  /\  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  (
( G `  k
) D y )  <  z ) ) ) )
131130biimpa 501 . . . . . . . . 9  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  ( G  e.  ( X  ^pm  CC )  /\  y  e.  X  /\  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) ) )
132131simp3d 1075 . . . . . . . 8  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) )
133 r19.26 3064 . . . . . . . . . . 11  |-  ( A. z  e.  RR+  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) k  e. 
dom  F  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) )  <->  ( A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F  /\  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  (
( G `  k
) D y )  <  z ) ) )
13410rexanuz2 14089 . . . . . . . . . . . . 13  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) )  <->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  (
( G `  k
) D y )  <  z ) ) )
135 simprl 794 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) ) )  ->  k  e.  dom  F )
13699ad2ant2lr 784 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) ) )  ->  ( G `  k )  =  ( F `  k ) )
137 simprr2 1110 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) ) )  ->  ( G `  k )  e.  X )
138136, 137eqeltrrd 2702 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) ) )  ->  ( F `  k )  e.  X )
139136oveq1d 6665 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) ) )  ->  (
( G `  k
) D y )  =  ( ( F `
 k ) D y ) )
140 simprr3 1111 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) ) )  ->  (
( G `  k
) D y )  <  z )
141139, 140eqbrtrrd 4677 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) ) )  ->  (
( F `  k
) D y )  <  z )
142135, 138, 1413jca 1242 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) ) )  ->  (
k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D y )  <  z ) )
143142ex 450 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) )  ->  ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D y )  <  z ) ) )
14486, 143sylan2 491 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( k  e.  dom  F  /\  ( k  e. 
dom  G  /\  ( G `  k )  e.  X  /\  (
( G `  k
) D y )  <  z ) )  ->  ( k  e. 
dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D y )  <  z ) ) )
145144anassrs 680 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) )  ->  ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D y )  <  z ) ) )
146145ralimdva 2962 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) )  ->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D y )  <  z ) ) )
147146reximdva 3017 . . . . . . . . . . . . 13  |-  ( ph  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( k  e. 
dom  G  /\  ( G `  k )  e.  X  /\  (
( G `  k
) D y )  <  z ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D y )  <  z ) ) )
148134, 147syl5bir 233 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  (
( G `  k
) D y )  <  z ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D y )  <  z ) ) )
149148ralimdv 2963 . . . . . . . . . . 11  |-  ( ph  ->  ( A. z  e.  RR+  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  (
( G `  k
) D y )  <  z ) )  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D y )  <  z ) ) )
150133, 149syl5bir 233 . . . . . . . . . 10  |-  ( ph  ->  ( ( A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F  /\  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  (
( G `  k
) D y )  <  z ) )  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D y )  <  z ) ) )
15148, 150mpand 711 . . . . . . . . 9  |-  ( ph  ->  ( A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  (
( G `  k
) D y )  <  z )  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D y )  <  z ) ) )
152151adantr 481 . . . . . . . 8  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  ( A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z )  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D y )  <  z ) ) )
153132, 152mpd 15 . . . . . . 7  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D y )  <  z ) )
1545adantr 481 . . . . . . . 8  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  D  e.  ( *Met `  X ) )
155 1zzd 11408 . . . . . . . 8  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  1  e.  ZZ )
1566, 154, 10, 155lmmbr3 23058 . . . . . . 7  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  ( F ( ~~> t `  J ) y  <->  ( F  e.  ( X  ^pm  CC )  /\  y  e.  X  /\  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D y )  <  z ) ) ) )
157127, 129, 153, 156mpbir3and 1245 . . . . . 6  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  F
( ~~> t `  J
) y )
158 lmrel 21034 . . . . . . 7  |-  Rel  ( ~~> t `  J )
159158releldmi 5362 . . . . . 6  |-  ( F ( ~~> t `  J
) y  ->  F  e.  dom  ( ~~> t `  J ) )
160157, 159syl 17 . . . . 5  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  F  e.  dom  ( ~~> t `  J ) )
161160ex 450 . . . 4  |-  ( ph  ->  ( G ( ~~> t `  J ) y  ->  F  e.  dom  ( ~~> t `  J ) ) )
162126, 161sylbird 250 . . 3  |-  ( ph  ->  ( y  e.  ( ( J  fLimf  ( NN
filGen ( ZZ>= " NN ) ) ) `  G )  ->  F  e.  dom  (
~~> t `  J ) ) )
163162exlimdv 1861 . 2  |-  ( ph  ->  ( E. y  y  e.  ( ( J 
fLimf  ( NN filGen ( ZZ>= " NN ) ) ) `  G )  ->  F  e.  dom  ( ~~> t `  J ) ) )
164124, 163mpd 15 1  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   1c1 9937    < clt 10074   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   *Metcxmt 19731   Metcme 19732   fBascfbas 19734   filGencfg 19735   MetOpencmopn 19736  TopOnctopon 20715   ~~> tclm 21030   Filcfil 21649    FilMap cfm 21737    fLim cflim 21738    fLimf cflf 21739  CauFilccfil 23050   Caucca 23051   CMetcms 23052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-ntr 20824  df-nei 20902  df-lm 21033  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-cfil 23053  df-cau 23054  df-cmet 23055
This theorem is referenced by:  cmetcau  23087
  Copyright terms: Public domain W3C validator