Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfioobdlem Structured version   Visualization version   Unicode version

Theorem cncfioobdlem 40109
Description:  G actually extends  F. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfioobdlem.a  |-  ( ph  ->  A  e.  RR )
cncfioobdlem.b  |-  ( ph  ->  B  e.  RR )
cncfioobdlem.f  |-  ( ph  ->  F : ( A (,) B ) --> V )
cncfioobdlem.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) ) )
cncfioobdlem.c  |-  ( ph  ->  C  e.  ( A (,) B ) )
Assertion
Ref Expression
cncfioobdlem  |-  ( ph  ->  ( G `  C
)  =  ( F `
 C ) )
Distinct variable groups:    x, A    x, B    x, C    x, F    ph, x
Allowed substitution hints:    R( x)    G( x)    L( x)    V( x)

Proof of Theorem cncfioobdlem
StepHypRef Expression
1 cncfioobdlem.g . . 3  |-  G  =  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) ) )
21a1i 11 . 2  |-  ( ph  ->  G  =  ( x  e.  ( A [,] B )  |->  if ( x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) ) ) )
3 cncfioobdlem.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
43adantr 481 . . . . . 6  |-  ( (
ph  /\  x  =  C )  ->  A  e.  RR )
5 cncfioobdlem.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  ( A (,) B ) )
63rexrd 10089 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR* )
7 cncfioobdlem.b . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR )
87rexrd 10089 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR* )
9 elioo2 12216 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A (,) B )  <->  ( C  e.  RR  /\  A  < 
C  /\  C  <  B ) ) )
106, 8, 9syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( C  e.  ( A (,) B )  <-> 
( C  e.  RR  /\  A  <  C  /\  C  <  B ) ) )
115, 10mpbid 222 . . . . . . . . 9  |-  ( ph  ->  ( C  e.  RR  /\  A  <  C  /\  C  <  B ) )
1211simp2d 1074 . . . . . . . 8  |-  ( ph  ->  A  <  C )
1312adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  =  C )  ->  A  <  C )
14 eqcom 2629 . . . . . . . . 9  |-  ( x  =  C  <->  C  =  x )
1514biimpi 206 . . . . . . . 8  |-  ( x  =  C  ->  C  =  x )
1615adantl 482 . . . . . . 7  |-  ( (
ph  /\  x  =  C )  ->  C  =  x )
1713, 16breqtrd 4679 . . . . . 6  |-  ( (
ph  /\  x  =  C )  ->  A  <  x )
184, 17gtned 10172 . . . . 5  |-  ( (
ph  /\  x  =  C )  ->  x  =/=  A )
1918neneqd 2799 . . . 4  |-  ( (
ph  /\  x  =  C )  ->  -.  x  =  A )
2019iffalsed 4097 . . 3  |-  ( (
ph  /\  x  =  C )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  if ( x  =  B ,  L ,  ( F `  x ) ) )
21 simpr 477 . . . . . . 7  |-  ( (
ph  /\  x  =  C )  ->  x  =  C )
225elioored 39776 . . . . . . . 8  |-  ( ph  ->  C  e.  RR )
2322adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  =  C )  ->  C  e.  RR )
2421, 23eqeltrd 2701 . . . . . 6  |-  ( (
ph  /\  x  =  C )  ->  x  e.  RR )
2511simp3d 1075 . . . . . . . 8  |-  ( ph  ->  C  <  B )
2625adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  =  C )  ->  C  <  B )
2721, 26eqbrtrd 4675 . . . . . 6  |-  ( (
ph  /\  x  =  C )  ->  x  <  B )
2824, 27ltned 10173 . . . . 5  |-  ( (
ph  /\  x  =  C )  ->  x  =/=  B )
2928neneqd 2799 . . . 4  |-  ( (
ph  /\  x  =  C )  ->  -.  x  =  B )
3029iffalsed 4097 . . 3  |-  ( (
ph  /\  x  =  C )  ->  if ( x  =  B ,  L ,  ( F `
 x ) )  =  ( F `  x ) )
3121fveq2d 6195 . . 3  |-  ( (
ph  /\  x  =  C )  ->  ( F `  x )  =  ( F `  C ) )
3220, 30, 313eqtrd 2660 . 2  |-  ( (
ph  /\  x  =  C )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  ( F `  C ) )
33 ioossicc 12259 . . 3  |-  ( A (,) B )  C_  ( A [,] B )
3433, 5sseldi 3601 . 2  |-  ( ph  ->  C  e.  ( A [,] B ) )
35 cncfioobdlem.f . . 3  |-  ( ph  ->  F : ( A (,) B ) --> V )
3635, 5ffvelrnd 6360 . 2  |-  ( ph  ->  ( F `  C
)  e.  V )
372, 32, 34, 36fvmptd 6288 1  |-  ( ph  ->  ( G `  C
)  =  ( F `
 C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   RR*cxr 10073    < clt 10074   (,)cioo 12175   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioo 12179  df-icc 12182
This theorem is referenced by:  cncfioobd  40110
  Copyright terms: Public domain W3C validator