| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioossicc | Structured version Visualization version Unicode version | ||
| Description: An open interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) |
| Ref | Expression |
|---|---|
| ioossicc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ioo 12179 |
. 2
| |
| 2 | df-icc 12182 |
. 2
| |
| 3 | xrltle 11982 |
. 2
| |
| 4 | xrltle 11982 |
. 2
| |
| 5 | 1, 2, 3, 4 | ixxssixx 12189 |
1
|
| Copyright terms: Public domain | W3C validator |