Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfiooiccre Structured version   Visualization version   Unicode version

Theorem cncfiooiccre 40108
Description: A continuous function  F on an open interval  ( A (,) B ) can be extended to a continuous function  G on the corresponding closed interval, if it has a finite right limit  R in  A and a finite left limit  L in  B.  F is assumed to be real-valued. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfiooiccre.x  |-  F/ x ph
cncfiooiccre.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) ) )
cncfiooiccre.a  |-  ( ph  ->  A  e.  RR )
cncfiooiccre.b  |-  ( ph  ->  B  e.  RR )
cncfiooiccre.altb  |-  ( ph  ->  A  <  B )
cncfiooiccre.f  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> RR ) )
cncfiooiccre.l  |-  ( ph  ->  L  e.  ( F lim
CC  B ) )
cncfiooiccre.r  |-  ( ph  ->  R  e.  ( F lim
CC  A ) )
Assertion
Ref Expression
cncfiooiccre  |-  ( ph  ->  G  e.  ( ( A [,] B )
-cn-> RR ) )
Distinct variable groups:    x, A    x, B    x, F    x, L    x, R    ph, x
Allowed substitution hint:    G( x)

Proof of Theorem cncfiooiccre
StepHypRef Expression
1 iftrue 4092 . . . . . . 7  |-  ( x  =  A  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  R )
21adantl 482 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  R )
3 cncfiooiccre.f . . . . . . . . 9  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> RR ) )
4 cncff 22696 . . . . . . . . 9  |-  ( F  e.  ( ( A (,) B ) -cn-> RR )  ->  F :
( A (,) B
) --> RR )
53, 4syl 17 . . . . . . . 8  |-  ( ph  ->  F : ( A (,) B ) --> RR )
6 ioosscn 39716 . . . . . . . . 9  |-  ( A (,) B )  C_  CC
76a1i 11 . . . . . . . 8  |-  ( ph  ->  ( A (,) B
)  C_  CC )
8 eqid 2622 . . . . . . . . 9  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
9 cncfiooiccre.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR )
109rexrd 10089 . . . . . . . . 9  |-  ( ph  ->  B  e.  RR* )
11 cncfiooiccre.a . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
12 cncfiooiccre.altb . . . . . . . . 9  |-  ( ph  ->  A  <  B )
138, 10, 11, 12lptioo1cn 39878 . . . . . . . 8  |-  ( ph  ->  A  e.  ( (
limPt `  ( TopOpen ` fld ) ) `  ( A (,) B ) ) )
14 cncfiooiccre.r . . . . . . . 8  |-  ( ph  ->  R  e.  ( F lim
CC  A ) )
155, 7, 13, 14limcrecl 39861 . . . . . . 7  |-  ( ph  ->  R  e.  RR )
1615adantr 481 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  R  e.  RR )
172, 16eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  e.  RR )
1817adantlr 751 . . . 4  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  e.  RR )
19 iffalse 4095 . . . . . . . . 9  |-  ( -.  x  =  A  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) )  =  if ( x  =  B ,  L ,  ( F `  x ) ) )
20 iftrue 4092 . . . . . . . . 9  |-  ( x  =  B  ->  if ( x  =  B ,  L ,  ( F `
 x ) )  =  L )
2119, 20sylan9eq 2676 . . . . . . . 8  |-  ( ( -.  x  =  A  /\  x  =  B )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  =  L )
2221adantll 750 . . . . . . 7  |-  ( ( ( ph  /\  -.  x  =  A )  /\  x  =  B
)  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  =  L )
2311rexrd 10089 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR* )
248, 23, 9, 12lptioo2cn 39877 . . . . . . . . 9  |-  ( ph  ->  B  e.  ( (
limPt `  ( TopOpen ` fld ) ) `  ( A (,) B ) ) )
25 cncfiooiccre.l . . . . . . . . 9  |-  ( ph  ->  L  e.  ( F lim
CC  B ) )
265, 7, 24, 25limcrecl 39861 . . . . . . . 8  |-  ( ph  ->  L  e.  RR )
2726ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  -.  x  =  A )  /\  x  =  B
)  ->  L  e.  RR )
2822, 27eqeltrd 2701 . . . . . 6  |-  ( ( ( ph  /\  -.  x  =  A )  /\  x  =  B
)  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  e.  RR )
2928adantllr 755 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  e.  RR )
30 iffalse 4095 . . . . . . . 8  |-  ( -.  x  =  B  ->  if ( x  =  B ,  L ,  ( F `  x ) )  =  ( F `
 x ) )
3119, 30sylan9eq 2676 . . . . . . 7  |-  ( ( -.  x  =  A  /\  -.  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  ( F `  x ) )
3231adantll 750 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  ( F `  x ) )
335ad3antrrr 766 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  F : ( A (,) B ) --> RR )
3423ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  A  e.  RR* )
3510ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  B  e.  RR* )
3611adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A  e.  RR )
379adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR )
38 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  ( A [,] B ) )
39 eliccre 39728 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  x  e.  ( A [,] B
) )  ->  x  e.  RR )
4036, 37, 38, 39syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  RR )
4140ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  x  e.  RR )
4211ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  A  e.  RR )
4340adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  x  e.  RR )
4423ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  A  e.  RR* )
4510ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  B  e.  RR* )
4638adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  x  e.  ( A [,] B ) )
47 iccgelb 12230 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e.  ( A [,] B
) )  ->  A  <_  x )
4844, 45, 46, 47syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  A  <_  x )
49 neqne 2802 . . . . . . . . . . 11  |-  ( -.  x  =  A  ->  x  =/=  A )
5049adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  x  =/=  A )
5142, 43, 48, 50leneltd 10191 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  A  <  x )
5251adantr 481 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  A  <  x )
5340adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  x  e.  RR )
549ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  B  e.  RR )
5523ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  A  e.  RR* )
5610ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  B  e.  RR* )
5738adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  x  e.  ( A [,] B ) )
58 iccleub 12229 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e.  ( A [,] B
) )  ->  x  <_  B )
5955, 56, 57, 58syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  x  <_  B )
60 neqne 2802 . . . . . . . . . . . 12  |-  ( -.  x  =  B  ->  x  =/=  B )
6160necomd 2849 . . . . . . . . . . 11  |-  ( -.  x  =  B  ->  B  =/=  x )
6261adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  B  =/=  x )
6353, 54, 59, 62leneltd 10191 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  x  <  B )
6463adantlr 751 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  x  <  B )
6534, 35, 41, 52, 64eliood 39720 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  x  e.  ( A (,) B
) )
6633, 65ffvelrnd 6360 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  ( F `  x )  e.  RR )
6732, 66eqeltrd 2701 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  e.  RR )
6829, 67pm2.61dan 832 . . . 4  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  e.  RR )
6918, 68pm2.61dan 832 . . 3  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  e.  RR )
70 cncfiooiccre.g . . 3  |-  G  =  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) ) )
7169, 70fmptd 6385 . 2  |-  ( ph  ->  G : ( A [,] B ) --> RR )
72 ax-resscn 9993 . . 3  |-  RR  C_  CC
73 cncfiooiccre.x . . . 4  |-  F/ x ph
74 ssid 3624 . . . . . 6  |-  CC  C_  CC
75 cncfss 22702 . . . . . 6  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  (
( A (,) B
) -cn-> RR )  C_  (
( A (,) B
) -cn-> CC ) )
7672, 74, 75mp2an 708 . . . . 5  |-  ( ( A (,) B )
-cn-> RR )  C_  (
( A (,) B
) -cn-> CC )
7776, 3sseldi 3601 . . . 4  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
7873, 70, 11, 9, 77, 25, 14cncfiooicc 40107 . . 3  |-  ( ph  ->  G  e.  ( ( A [,] B )
-cn-> CC ) )
79 cncffvrn 22701 . . 3  |-  ( ( RR  C_  CC  /\  G  e.  ( ( A [,] B ) -cn-> CC ) )  ->  ( G  e.  ( ( A [,] B ) -cn-> RR )  <-> 
G : ( A [,] B ) --> RR ) )
8072, 78, 79sylancr 695 . 2  |-  ( ph  ->  ( G  e.  ( ( A [,] B
) -cn-> RR )  <->  G :
( A [,] B
) --> RR ) )
8171, 80mpbird 247 1  |-  ( ph  ->  G  e.  ( ( A [,] B )
-cn-> RR ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990    =/= wne 2794    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   RR*cxr 10073    < clt 10074    <_ cle 10075   (,)cioo 12175   [,]cicc 12178   TopOpenctopn 16082  ℂfldccnfld 19746   -cn->ccncf 22679   lim CC climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-cn 21031  df-cnp 21032  df-xms 22125  df-ms 22126  df-cncf 22681  df-limc 23630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator