Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmul01lt1 Structured version   Visualization version   Unicode version

Theorem fmul01lt1 39818
Description: Given a finite multiplication of values betweeen 0 and 1, a value E larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmul01lt1.1  |-  F/_ i B
fmul01lt1.2  |-  F/ i
ph
fmul01lt1.3  |-  F/_ j A
fmul01lt1.4  |-  A  =  seq 1 (  x.  ,  B )
fmul01lt1.5  |-  ( ph  ->  M  e.  NN )
fmul01lt1.6  |-  ( ph  ->  B : ( 1 ... M ) --> RR )
fmul01lt1.7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  0  <_  ( B `  i
) )
fmul01lt1.8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( B `  i )  <_  1 )
fmul01lt1.9  |-  ( ph  ->  E  e.  RR+ )
fmul01lt1.10  |-  ( ph  ->  E. j  e.  ( 1 ... M ) ( B `  j
)  <  E )
Assertion
Ref Expression
fmul01lt1  |-  ( ph  ->  ( A `  M
)  <  E )
Distinct variable groups:    i, j, E    i, M, j    ph, j
Allowed substitution hints:    ph( i)    A( i, j)    B( i, j)

Proof of Theorem fmul01lt1
StepHypRef Expression
1 fmul01lt1.10 . 2  |-  ( ph  ->  E. j  e.  ( 1 ... M ) ( B `  j
)  <  E )
2 nfv 1843 . . 3  |-  F/ j
ph
3 fmul01lt1.3 . . . . 5  |-  F/_ j A
4 nfcv 2764 . . . . 5  |-  F/_ j M
53, 4nffv 6198 . . . 4  |-  F/_ j
( A `  M
)
6 nfcv 2764 . . . 4  |-  F/_ j  <
7 nfcv 2764 . . . 4  |-  F/_ j E
85, 6, 7nfbr 4699 . . 3  |-  F/ j ( A `  M
)  <  E
9 fmul01lt1.1 . . . . 5  |-  F/_ i B
10 fmul01lt1.2 . . . . . 6  |-  F/ i
ph
11 nfv 1843 . . . . . 6  |-  F/ i  j  e.  ( 1 ... M )
12 nfcv 2764 . . . . . . . 8  |-  F/_ i
j
139, 12nffv 6198 . . . . . . 7  |-  F/_ i
( B `  j
)
14 nfcv 2764 . . . . . . 7  |-  F/_ i  <
15 nfcv 2764 . . . . . . 7  |-  F/_ i E
1613, 14, 15nfbr 4699 . . . . . 6  |-  F/ i ( B `  j
)  <  E
1710, 11, 16nf3an 1831 . . . . 5  |-  F/ i ( ph  /\  j  e.  ( 1 ... M
)  /\  ( B `  j )  <  E
)
18 fmul01lt1.4 . . . . 5  |-  A  =  seq 1 (  x.  ,  B )
19 1zzd 11408 . . . . 5  |-  ( (
ph  /\  j  e.  ( 1 ... M
)  /\  ( B `  j )  <  E
)  ->  1  e.  ZZ )
20 fmul01lt1.5 . . . . . . 7  |-  ( ph  ->  M  e.  NN )
21 elnnuz 11724 . . . . . . 7  |-  ( M  e.  NN  <->  M  e.  ( ZZ>= `  1 )
)
2220, 21sylib 208 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
23223ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  j  e.  ( 1 ... M
)  /\  ( B `  j )  <  E
)  ->  M  e.  ( ZZ>= `  1 )
)
24 fmul01lt1.6 . . . . . . 7  |-  ( ph  ->  B : ( 1 ... M ) --> RR )
2524ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( B `  i )  e.  RR )
26253ad2antl1 1223 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
)  /\  ( B `  j )  <  E
)  /\  i  e.  ( 1 ... M
) )  ->  ( B `  i )  e.  RR )
27 fmul01lt1.7 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  0  <_  ( B `  i
) )
28273ad2antl1 1223 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
)  /\  ( B `  j )  <  E
)  /\  i  e.  ( 1 ... M
) )  ->  0  <_  ( B `  i
) )
29 fmul01lt1.8 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( B `  i )  <_  1 )
30293ad2antl1 1223 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
)  /\  ( B `  j )  <  E
)  /\  i  e.  ( 1 ... M
) )  ->  ( B `  i )  <_  1 )
31 fmul01lt1.9 . . . . . 6  |-  ( ph  ->  E  e.  RR+ )
32313ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  j  e.  ( 1 ... M
)  /\  ( B `  j )  <  E
)  ->  E  e.  RR+ )
33 simp2 1062 . . . . 5  |-  ( (
ph  /\  j  e.  ( 1 ... M
)  /\  ( B `  j )  <  E
)  ->  j  e.  ( 1 ... M
) )
34 simp3 1063 . . . . 5  |-  ( (
ph  /\  j  e.  ( 1 ... M
)  /\  ( B `  j )  <  E
)  ->  ( B `  j )  <  E
)
359, 17, 18, 19, 23, 26, 28, 30, 32, 33, 34fmul01lt1lem2 39817 . . . 4  |-  ( (
ph  /\  j  e.  ( 1 ... M
)  /\  ( B `  j )  <  E
)  ->  ( A `  M )  <  E
)
36353exp 1264 . . 3  |-  ( ph  ->  ( j  e.  ( 1 ... M )  ->  ( ( B `
 j )  < 
E  ->  ( A `  M )  <  E
) ) )
372, 8, 36rexlimd 3026 . 2  |-  ( ph  ->  ( E. j  e.  ( 1 ... M
) ( B `  j )  <  E  ->  ( A `  M
)  <  E )
)
381, 37mpd 15 1  |-  ( ph  ->  ( A `  M
)  <  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751   E.wrex 2913   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075   NNcn 11020   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802
This theorem is referenced by:  stoweidlem48  40265
  Copyright terms: Public domain W3C validator