MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntrsubgnsg Structured version   Visualization version   Unicode version

Theorem cntrsubgnsg 17773
Description: A central subgroup is normal. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypothesis
Ref Expression
cntrnsg.z  |-  Z  =  (Cntr `  M )
Assertion
Ref Expression
cntrsubgnsg  |-  ( ( X  e.  (SubGrp `  M )  /\  X  C_  Z )  ->  X  e.  (NrmSGrp `  M )
)

Proof of Theorem cntrsubgnsg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . 2  |-  ( ( X  e.  (SubGrp `  M )  /\  X  C_  Z )  ->  X  e.  (SubGrp `  M )
)
2 simplr 792 . . . . . . . . 9  |-  ( ( ( X  e.  (SubGrp `  M )  /\  X  C_  Z )  /\  (
x  e.  ( Base `  M )  /\  y  e.  X ) )  ->  X  C_  Z )
3 simprr 796 . . . . . . . . 9  |-  ( ( ( X  e.  (SubGrp `  M )  /\  X  C_  Z )  /\  (
x  e.  ( Base `  M )  /\  y  e.  X ) )  -> 
y  e.  X )
42, 3sseldd 3604 . . . . . . . 8  |-  ( ( ( X  e.  (SubGrp `  M )  /\  X  C_  Z )  /\  (
x  e.  ( Base `  M )  /\  y  e.  X ) )  -> 
y  e.  Z )
5 eqid 2622 . . . . . . . . . 10  |-  ( Base `  M )  =  (
Base `  M )
6 eqid 2622 . . . . . . . . . 10  |-  (Cntz `  M )  =  (Cntz `  M )
75, 6cntrval 17752 . . . . . . . . 9  |-  ( (Cntz `  M ) `  ( Base `  M ) )  =  (Cntr `  M
)
8 cntrnsg.z . . . . . . . . 9  |-  Z  =  (Cntr `  M )
97, 8eqtr4i 2647 . . . . . . . 8  |-  ( (Cntz `  M ) `  ( Base `  M ) )  =  Z
104, 9syl6eleqr 2712 . . . . . . 7  |-  ( ( ( X  e.  (SubGrp `  M )  /\  X  C_  Z )  /\  (
x  e.  ( Base `  M )  /\  y  e.  X ) )  -> 
y  e.  ( (Cntz `  M ) `  ( Base `  M ) ) )
11 simprl 794 . . . . . . 7  |-  ( ( ( X  e.  (SubGrp `  M )  /\  X  C_  Z )  /\  (
x  e.  ( Base `  M )  /\  y  e.  X ) )  ->  x  e.  ( Base `  M ) )
12 eqid 2622 . . . . . . . 8  |-  ( +g  `  M )  =  ( +g  `  M )
1312, 6cntzi 17762 . . . . . . 7  |-  ( ( y  e.  ( (Cntz `  M ) `  ( Base `  M ) )  /\  x  e.  (
Base `  M )
)  ->  ( y
( +g  `  M ) x )  =  ( x ( +g  `  M
) y ) )
1410, 11, 13syl2anc 693 . . . . . 6  |-  ( ( ( X  e.  (SubGrp `  M )  /\  X  C_  Z )  /\  (
x  e.  ( Base `  M )  /\  y  e.  X ) )  -> 
( y ( +g  `  M ) x )  =  ( x ( +g  `  M ) y ) )
1514oveq1d 6665 . . . . 5  |-  ( ( ( X  e.  (SubGrp `  M )  /\  X  C_  Z )  /\  (
x  e.  ( Base `  M )  /\  y  e.  X ) )  -> 
( ( y ( +g  `  M ) x ) ( -g `  M ) x )  =  ( ( x ( +g  `  M
) y ) (
-g `  M )
x ) )
16 subgrcl 17599 . . . . . . 7  |-  ( X  e.  (SubGrp `  M
)  ->  M  e.  Grp )
1716ad2antrr 762 . . . . . 6  |-  ( ( ( X  e.  (SubGrp `  M )  /\  X  C_  Z )  /\  (
x  e.  ( Base `  M )  /\  y  e.  X ) )  ->  M  e.  Grp )
185subgss 17595 . . . . . . . 8  |-  ( X  e.  (SubGrp `  M
)  ->  X  C_  ( Base `  M ) )
1918ad2antrr 762 . . . . . . 7  |-  ( ( ( X  e.  (SubGrp `  M )  /\  X  C_  Z )  /\  (
x  e.  ( Base `  M )  /\  y  e.  X ) )  ->  X  C_  ( Base `  M
) )
2019, 3sseldd 3604 . . . . . 6  |-  ( ( ( X  e.  (SubGrp `  M )  /\  X  C_  Z )  /\  (
x  e.  ( Base `  M )  /\  y  e.  X ) )  -> 
y  e.  ( Base `  M ) )
21 eqid 2622 . . . . . . 7  |-  ( -g `  M )  =  (
-g `  M )
225, 12, 21grppncan 17506 . . . . . 6  |-  ( ( M  e.  Grp  /\  y  e.  ( Base `  M )  /\  x  e.  ( Base `  M
) )  ->  (
( y ( +g  `  M ) x ) ( -g `  M
) x )  =  y )
2317, 20, 11, 22syl3anc 1326 . . . . 5  |-  ( ( ( X  e.  (SubGrp `  M )  /\  X  C_  Z )  /\  (
x  e.  ( Base `  M )  /\  y  e.  X ) )  -> 
( ( y ( +g  `  M ) x ) ( -g `  M ) x )  =  y )
2415, 23eqtr3d 2658 . . . 4  |-  ( ( ( X  e.  (SubGrp `  M )  /\  X  C_  Z )  /\  (
x  e.  ( Base `  M )  /\  y  e.  X ) )  -> 
( ( x ( +g  `  M ) y ) ( -g `  M ) x )  =  y )
2524, 3eqeltrd 2701 . . 3  |-  ( ( ( X  e.  (SubGrp `  M )  /\  X  C_  Z )  /\  (
x  e.  ( Base `  M )  /\  y  e.  X ) )  -> 
( ( x ( +g  `  M ) y ) ( -g `  M ) x )  e.  X )
2625ralrimivva 2971 . 2  |-  ( ( X  e.  (SubGrp `  M )  /\  X  C_  Z )  ->  A. x  e.  ( Base `  M
) A. y  e.  X  ( ( x ( +g  `  M
) y ) (
-g `  M )
x )  e.  X
)
275, 12, 21isnsg3 17628 . 2  |-  ( X  e.  (NrmSGrp `  M
)  <->  ( X  e.  (SubGrp `  M )  /\  A. x  e.  (
Base `  M ) A. y  e.  X  ( ( x ( +g  `  M ) y ) ( -g `  M ) x )  e.  X ) )
281, 26, 27sylanbrc 698 1  |-  ( ( X  e.  (SubGrp `  M )  /\  X  C_  Z )  ->  X  e.  (NrmSGrp `  M )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   Grpcgrp 17422   -gcsg 17424  SubGrpcsubg 17588  NrmSGrpcnsg 17589  Cntzccntz 17748  Cntrccntr 17749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-nsg 17592  df-cntz 17750  df-cntr 17751
This theorem is referenced by:  cntrnsg  17774
  Copyright terms: Public domain W3C validator