![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgss | Structured version Visualization version Unicode version |
Description: A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
issubg.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
subgss |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubg.b |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | issubg 17594 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | simp2bi 1077 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-subg 17591 |
This theorem is referenced by: subgbas 17598 subg0 17600 subginv 17601 subgsubcl 17605 subgsub 17606 subgmulgcl 17607 subgmulg 17608 issubg2 17609 issubg4 17613 subsubg 17617 subgint 17618 nsgconj 17627 nsgacs 17630 ssnmz 17636 eqger 17644 eqgid 17646 eqgen 17647 eqgcpbl 17648 lagsubg2 17655 lagsubg 17656 resghm 17676 ghmnsgima 17684 conjsubg 17692 conjsubgen 17693 conjnmz 17694 conjnmzb 17695 gicsubgen 17721 subgga 17733 gasubg 17735 gastacos 17743 orbstafun 17744 cntrsubgnsg 17773 oddvds2 17983 subgpgp 18012 odcau 18019 pgpssslw 18029 sylow2blem1 18035 sylow2blem2 18036 sylow2blem3 18037 slwhash 18039 fislw 18040 sylow2 18041 sylow3lem1 18042 sylow3lem2 18043 sylow3lem3 18044 sylow3lem4 18045 sylow3lem5 18046 sylow3lem6 18047 lsmval 18063 lsmelval 18064 lsmelvali 18065 lsmelvalm 18066 lsmsubg 18069 lsmub1 18071 lsmub2 18072 lsmless1 18074 lsmless2 18075 lsmless12 18076 lsmass 18083 subglsm 18086 lsmmod 18088 cntzrecd 18091 lsmcntz 18092 lsmcntzr 18093 lsmdisj2 18095 subgdisj1 18104 pj1f 18110 pj1id 18112 pj1lid 18114 pj1rid 18115 pj1ghm 18116 subgabl 18241 ablcntzd 18260 lsmcom 18261 dprdff 18411 dprdfadd 18419 dprdres 18427 dprdss 18428 subgdmdprd 18433 dprdcntz2 18437 dmdprdsplit2lem 18444 ablfacrp 18465 ablfac1eu 18472 pgpfac1lem1 18473 pgpfac1lem2 18474 pgpfac1lem3a 18475 pgpfac1lem3 18476 pgpfac1lem4 18477 pgpfac1lem5 18478 pgpfaclem1 18480 pgpfaclem2 18481 pgpfaclem3 18482 ablfaclem3 18486 ablfac2 18488 issubrg2 18800 issubrg3 18808 islss4 18962 mpllsslem 19435 phssip 20003 subgtgp 21909 subgntr 21910 opnsubg 21911 clssubg 21912 clsnsg 21913 cldsubg 21914 qustgpopn 21923 qustgphaus 21926 tgptsmscls 21953 subgnm 22437 subgngp 22439 lssnlm 22505 efgh 24287 efabl 24296 efsubm 24297 idomsubgmo 37776 |
Copyright terms: Public domain | W3C validator |