MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coafval Structured version   Visualization version   Unicode version

Theorem coafval 16714
Description: The value of the composition of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coafval.o  |-  .x.  =  (compa `  C )
coafval.a  |-  A  =  (Nat `  C )
coafval.x  |-  .xb  =  (comp `  C )
Assertion
Ref Expression
coafval  |-  .x.  =  ( g  e.  A ,  f  e.  { h  e.  A  |  (coda `  h
)  =  (domA `  g ) }  |->  <. (domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >.  .xb  (coda `  g
) ) ( 2nd `  f ) ) >.
)
Distinct variable groups:    f, g, h, A    C, f, g, h
Allowed substitution hints:    .xb ( f, g, h)    .x. ( f, g, h)

Proof of Theorem coafval
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 coafval.o . 2  |-  .x.  =  (compa `  C )
2 fveq2 6191 . . . . . 6  |-  ( c  =  C  ->  (Nat `  c )  =  (Nat
`  C ) )
3 coafval.a . . . . . 6  |-  A  =  (Nat `  C )
42, 3syl6eqr 2674 . . . . 5  |-  ( c  =  C  ->  (Nat `  c )  =  A )
54rabeqdv 3194 . . . . 5  |-  ( c  =  C  ->  { h  e.  (Nat `  c )  |  (coda
`  h )  =  (domA `  g ) }  =  { h  e.  A  |  (coda
`  h )  =  (domA `  g ) } )
6 fveq2 6191 . . . . . . . . 9  |-  ( c  =  C  ->  (comp `  c )  =  (comp `  C ) )
7 coafval.x . . . . . . . . 9  |-  .xb  =  (comp `  C )
86, 7syl6eqr 2674 . . . . . . . 8  |-  ( c  =  C  ->  (comp `  c )  =  .xb  )
98oveqd 6667 . . . . . . 7  |-  ( c  =  C  ->  ( <. (domA `  f ) ,  (domA `  g
) >. (comp `  c
) (coda
`  g ) )  =  ( <. (domA `  f ) ,  (domA `  g ) >.  .xb  (coda `  g
) ) )
109oveqd 6667 . . . . . 6  |-  ( c  =  C  ->  (
( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >. (comp `  c ) (coda `  g
) ) ( 2nd `  f ) )  =  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >.  .xb  (coda `  g
) ) ( 2nd `  f ) ) )
1110oteq3d 4416 . . . . 5  |-  ( c  =  C  ->  <. (domA `  f ) ,  (coda
`  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >. (comp `  c ) (coda `  g
) ) ( 2nd `  f ) ) >.  =  <. (domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >.  .xb  (coda `  g
) ) ( 2nd `  f ) ) >.
)
124, 5, 11mpt2eq123dv 6717 . . . 4  |-  ( c  =  C  ->  (
g  e.  (Nat `  c ) ,  f  e.  { h  e.  (Nat `  c )  |  (coda
`  h )  =  (domA `  g ) }  |->  <.
(domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >. (comp `  c ) (coda `  g
) ) ( 2nd `  f ) ) >.
)  =  ( g  e.  A ,  f  e.  { h  e.  A  |  (coda `  h
)  =  (domA `  g ) }  |->  <. (domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >.  .xb  (coda `  g
) ) ( 2nd `  f ) ) >.
) )
13 df-coa 16706 . . . 4  |- compa  =  ( c  e. 
Cat  |->  ( g  e.  (Nat `  c ) ,  f  e.  { h  e.  (Nat `  c )  |  (coda
`  h )  =  (domA `  g ) }  |->  <.
(domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >. (comp `  c ) (coda `  g
) ) ( 2nd `  f ) ) >.
) )
14 fvex 6201 . . . . . 6  |-  (Nat `  C )  e.  _V
153, 14eqeltri 2697 . . . . 5  |-  A  e. 
_V
1615rabex 4813 . . . . 5  |-  { h  e.  A  |  (coda `  h
)  =  (domA `  g ) }  e.  _V
1715, 16mpt2ex 7247 . . . 4  |-  ( g  e.  A ,  f  e.  { h  e.  A  |  (coda `  h
)  =  (domA `  g ) }  |->  <. (domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >.  .xb  (coda `  g
) ) ( 2nd `  f ) ) >.
)  e.  _V
1812, 13, 17fvmpt 6282 . . 3  |-  ( C  e.  Cat  ->  (compa `  C
)  =  ( g  e.  A ,  f  e.  { h  e.  A  |  (coda `  h
)  =  (domA `  g ) }  |->  <. (domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >.  .xb  (coda `  g
) ) ( 2nd `  f ) ) >.
) )
1913dmmptss 5631 . . . . . . 7  |-  dom compa  C_  Cat
2019sseli 3599 . . . . . 6  |-  ( C  e.  dom compa  ->  C  e.  Cat )
2120con3i 150 . . . . 5  |-  ( -.  C  e.  Cat  ->  -.  C  e.  dom compa )
22 ndmfv 6218 . . . . 5  |-  ( -.  C  e.  dom compa  ->  (compa `  C )  =  (/) )
2321, 22syl 17 . . . 4  |-  ( -.  C  e.  Cat  ->  (compa `  C )  =  (/) )
243arwrcl 16694 . . . . . . . 8  |-  ( f  e.  A  ->  C  e.  Cat )
2524con3i 150 . . . . . . 7  |-  ( -.  C  e.  Cat  ->  -.  f  e.  A )
2625eq0rdv 3979 . . . . . 6  |-  ( -.  C  e.  Cat  ->  A  =  (/) )
27 eqidd 2623 . . . . . 6  |-  ( -.  C  e.  Cat  ->  { h  e.  A  | 
(coda `  h )  =  (domA `  g
) }  =  {
h  e.  A  | 
(coda `  h )  =  (domA `  g
) } )
28 eqidd 2623 . . . . . 6  |-  ( -.  C  e.  Cat  ->  <.
(domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >.  .xb  (coda `  g
) ) ( 2nd `  f ) ) >.  =  <. (domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >.  .xb  (coda `  g
) ) ( 2nd `  f ) ) >.
)
2926, 27, 28mpt2eq123dv 6717 . . . . 5  |-  ( -.  C  e.  Cat  ->  ( g  e.  A , 
f  e.  { h  e.  A  |  (coda `  h
)  =  (domA `  g ) }  |->  <. (domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >.  .xb  (coda `  g
) ) ( 2nd `  f ) ) >.
)  =  ( g  e.  (/) ,  f  e. 
{ h  e.  A  |  (coda
`  h )  =  (domA `  g ) }  |->  <.
(domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >.  .xb  (coda `  g
) ) ( 2nd `  f ) ) >.
) )
30 mpt20 6725 . . . . 5  |-  ( g  e.  (/) ,  f  e. 
{ h  e.  A  |  (coda
`  h )  =  (domA `  g ) }  |->  <.
(domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >.  .xb  (coda `  g
) ) ( 2nd `  f ) ) >.
)  =  (/)
3129, 30syl6eq 2672 . . . 4  |-  ( -.  C  e.  Cat  ->  ( g  e.  A , 
f  e.  { h  e.  A  |  (coda `  h
)  =  (domA `  g ) }  |->  <. (domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >.  .xb  (coda `  g
) ) ( 2nd `  f ) ) >.
)  =  (/) )
3223, 31eqtr4d 2659 . . 3  |-  ( -.  C  e.  Cat  ->  (compa `  C )  =  ( g  e.  A , 
f  e.  { h  e.  A  |  (coda `  h
)  =  (domA `  g ) }  |->  <. (domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >.  .xb  (coda `  g
) ) ( 2nd `  f ) ) >.
) )
3318, 32pm2.61i 176 . 2  |-  (compa `  C
)  =  ( g  e.  A ,  f  e.  { h  e.  A  |  (coda `  h
)  =  (domA `  g ) }  |->  <. (domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >.  .xb  (coda `  g
) ) ( 2nd `  f ) ) >.
)
341, 33eqtri 2644 1  |-  .x.  =  ( g  e.  A ,  f  e.  { h  e.  A  |  (coda `  h
)  =  (domA `  g ) }  |->  <. (domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >.  .xb  (coda `  g
) ) ( 2nd `  f ) ) >.
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   (/)c0 3915   <.cop 4183   <.cotp 4185   dom cdm 5114   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   2ndc2nd 7167  compcco 15953   Catccat 16325  domAcdoma 16670  codaccoda 16671  Natcarw 16672  compaccoa 16704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-arw 16677  df-coa 16706
This theorem is referenced by:  eldmcoa  16715  dmcoass  16716  coaval  16718  coapm  16721
  Copyright terms: Public domain W3C validator