MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmcoa Structured version   Visualization version   Unicode version

Theorem eldmcoa 16715
Description: A pair  <. G ,  F >. is in the domain of the arrow composition, if the domain of  G equals the codomain of  F. (In this case we say  G and  F are composable.) (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coafval.o  |-  .x.  =  (compa `  C )
coafval.a  |-  A  =  (Nat `  C )
Assertion
Ref Expression
eldmcoa  |-  ( G dom  .x.  F  <->  ( F  e.  A  /\  G  e.  A  /\  (coda `  F
)  =  (domA `  G ) ) )

Proof of Theorem eldmcoa
Dummy variables  f 
g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4654 . 2  |-  ( G dom  .x.  F  <->  <. G ,  F >.  e.  dom  .x.  )
2 otex 4933 . . . . . 6  |-  <. (domA `  f ) ,  (coda
`  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >. (comp `  C ) (coda `  g
) ) ( 2nd `  f ) ) >.  e.  _V
32rgen2w 2925 . . . . 5  |-  A. g  e.  A  A. f  e.  { h  e.  A  |  (coda
`  h )  =  (domA `  g ) } <. (domA `  f
) ,  (coda `  g
) ,  ( ( 2nd `  g ) ( <. (domA `  f ) ,  (domA `  g
) >. (comp `  C
) (coda
`  g ) ) ( 2nd `  f
) ) >.  e.  _V
4 coafval.o . . . . . . 7  |-  .x.  =  (compa `  C )
5 coafval.a . . . . . . 7  |-  A  =  (Nat `  C )
6 eqid 2622 . . . . . . 7  |-  (comp `  C )  =  (comp `  C )
74, 5, 6coafval 16714 . . . . . 6  |-  .x.  =  ( g  e.  A ,  f  e.  { h  e.  A  |  (coda `  h
)  =  (domA `  g ) }  |->  <. (domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >. (comp `  C ) (coda `  g
) ) ( 2nd `  f ) ) >.
)
87fmpt2x 7236 . . . . 5  |-  ( A. g  e.  A  A. f  e.  { h  e.  A  |  (coda `  h
)  =  (domA `  g ) } <. (domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >. (comp `  C ) (coda `  g
) ) ( 2nd `  f ) ) >.  e.  _V  <->  .x.  : U_ g  e.  A  ( {
g }  X.  {
h  e.  A  | 
(coda `  h )  =  (domA `  g
) } ) --> _V )
93, 8mpbi 220 . . . 4  |-  .x.  : U_ g  e.  A  ( { g }  X.  { h  e.  A  |  (coda
`  h )  =  (domA `  g ) } ) --> _V
109fdmi 6052 . . 3  |-  dom  .x.  =  U_ g  e.  A  ( { g }  X.  { h  e.  A  |  (coda
`  h )  =  (domA `  g ) } )
1110eleq2i 2693 . 2  |-  ( <. G ,  F >.  e. 
dom  .x.  <->  <. G ,  F >.  e.  U_ g  e.  A  ( { g }  X.  { h  e.  A  |  (coda `  h
)  =  (domA `  g ) } ) )
12 fveq2 6191 . . . . . 6  |-  ( g  =  G  ->  (domA `  g )  =  (domA `  G ) )
1312eqeq2d 2632 . . . . 5  |-  ( g  =  G  ->  (
(coda `  h )  =  (domA `  g
)  <->  (coda
`  h )  =  (domA `  G ) ) )
1413rabbidv 3189 . . . 4  |-  ( g  =  G  ->  { h  e.  A  |  (coda `  h
)  =  (domA `  g ) }  =  { h  e.  A  |  (coda `  h
)  =  (domA `  G ) } )
1514opeliunxp2 5260 . . 3  |-  ( <. G ,  F >.  e. 
U_ g  e.  A  ( { g }  X.  { h  e.  A  |  (coda
`  h )  =  (domA `  g ) } )  <-> 
( G  e.  A  /\  F  e.  { h  e.  A  |  (coda `  h
)  =  (domA `  G ) } ) )
16 fveq2 6191 . . . . . 6  |-  ( h  =  F  ->  (coda `  h
)  =  (coda `  F
) )
1716eqeq1d 2624 . . . . 5  |-  ( h  =  F  ->  (
(coda `  h )  =  (domA `  G
)  <->  (coda
`  F )  =  (domA `  G ) ) )
1817elrab 3363 . . . 4  |-  ( F  e.  { h  e.  A  |  (coda `  h
)  =  (domA `  G ) }  <->  ( F  e.  A  /\  (coda `  F
)  =  (domA `  G ) ) )
1918anbi2i 730 . . 3  |-  ( ( G  e.  A  /\  F  e.  { h  e.  A  |  (coda `  h
)  =  (domA `  G ) } )  <->  ( G  e.  A  /\  ( F  e.  A  /\  (coda `  F )  =  (domA `  G
) ) ) )
20 an12 838 . . . 4  |-  ( ( G  e.  A  /\  ( F  e.  A  /\  (coda
`  F )  =  (domA `  G ) ) )  <-> 
( F  e.  A  /\  ( G  e.  A  /\  (coda
`  F )  =  (domA `  G ) ) ) )
21 3anass 1042 . . . 4  |-  ( ( F  e.  A  /\  G  e.  A  /\  (coda `  F )  =  (domA `  G
) )  <->  ( F  e.  A  /\  ( G  e.  A  /\  (coda `  F )  =  (domA `  G
) ) ) )
2220, 21bitr4i 267 . . 3  |-  ( ( G  e.  A  /\  ( F  e.  A  /\  (coda
`  F )  =  (domA `  G ) ) )  <-> 
( F  e.  A  /\  G  e.  A  /\  (coda
`  F )  =  (domA `  G ) ) )
2315, 19, 223bitri 286 . 2  |-  ( <. G ,  F >.  e. 
U_ g  e.  A  ( { g }  X.  { h  e.  A  |  (coda
`  h )  =  (domA `  g ) } )  <-> 
( F  e.  A  /\  G  e.  A  /\  (coda
`  F )  =  (domA `  G ) ) )
241, 11, 233bitri 286 1  |-  ( G dom  .x.  F  <->  ( F  e.  A  /\  G  e.  A  /\  (coda `  F
)  =  (domA `  G ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   {csn 4177   <.cop 4183   <.cotp 4185   U_ciun 4520   class class class wbr 4653    X. cxp 5112   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   2ndc2nd 7167  compcco 15953  domAcdoma 16670  codaccoda 16671  Natcarw 16672  compaccoa 16704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-arw 16677  df-coa 16706
This theorem is referenced by:  homdmcoa  16717  coapm  16721
  Copyright terms: Public domain W3C validator