MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofuval2 Structured version   Visualization version   Unicode version

Theorem cofuval2 16547
Description: Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval2.b  |-  B  =  ( Base `  C
)
cofuval2.f  |-  ( ph  ->  F ( C  Func  D ) G )
cofuval2.x  |-  ( ph  ->  H ( D  Func  E ) K )
Assertion
Ref Expression
cofuval2  |-  ( ph  ->  ( <. H ,  K >.  o.func 
<. F ,  G >. )  =  <. ( H  o.  F ) ,  ( x  e.  B , 
y  e.  B  |->  ( ( ( F `  x ) K ( F `  y ) )  o.  ( x G y ) ) ) >. )
Distinct variable groups:    x, y, B    x, F, y    x, G, y    x, H, y    ph, x, y    x, K, y
Allowed substitution hints:    C( x, y)    D( x, y)    E( x, y)

Proof of Theorem cofuval2
StepHypRef Expression
1 cofuval2.b . . 3  |-  B  =  ( Base `  C
)
2 cofuval2.f . . . 4  |-  ( ph  ->  F ( C  Func  D ) G )
3 df-br 4654 . . . 4  |-  ( F ( C  Func  D
) G  <->  <. F ,  G >.  e.  ( C 
Func  D ) )
42, 3sylib 208 . . 3  |-  ( ph  -> 
<. F ,  G >.  e.  ( C  Func  D
) )
5 cofuval2.x . . . 4  |-  ( ph  ->  H ( D  Func  E ) K )
6 df-br 4654 . . . 4  |-  ( H ( D  Func  E
) K  <->  <. H ,  K >.  e.  ( D 
Func  E ) )
75, 6sylib 208 . . 3  |-  ( ph  -> 
<. H ,  K >.  e.  ( D  Func  E
) )
81, 4, 7cofuval 16542 . 2  |-  ( ph  ->  ( <. H ,  K >.  o.func 
<. F ,  G >. )  =  <. ( ( 1st `  <. H ,  K >. )  o.  ( 1st `  <. F ,  G >. ) ) ,  ( x  e.  B , 
y  e.  B  |->  ( ( ( ( 1st `  <. F ,  G >. ) `  x ) ( 2nd `  <. H ,  K >. )
( ( 1st `  <. F ,  G >. ) `  y ) )  o.  ( x ( 2nd `  <. F ,  G >. ) y ) ) ) >. )
9 relfunc 16522 . . . . . 6  |-  Rel  ( D  Func  E )
10 brrelex12 5155 . . . . . 6  |-  ( ( Rel  ( D  Func  E )  /\  H ( D  Func  E ) K )  ->  ( H  e.  _V  /\  K  e.  _V ) )
119, 5, 10sylancr 695 . . . . 5  |-  ( ph  ->  ( H  e.  _V  /\  K  e.  _V )
)
12 op1stg 7180 . . . . 5  |-  ( ( H  e.  _V  /\  K  e.  _V )  ->  ( 1st `  <. H ,  K >. )  =  H )
1311, 12syl 17 . . . 4  |-  ( ph  ->  ( 1st `  <. H ,  K >. )  =  H )
14 relfunc 16522 . . . . . 6  |-  Rel  ( C  Func  D )
15 brrelex12 5155 . . . . . 6  |-  ( ( Rel  ( C  Func  D )  /\  F ( C  Func  D ) G )  ->  ( F  e.  _V  /\  G  e.  _V ) )
1614, 2, 15sylancr 695 . . . . 5  |-  ( ph  ->  ( F  e.  _V  /\  G  e.  _V )
)
17 op1stg 7180 . . . . 5  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( 1st `  <. F ,  G >. )  =  F )
1816, 17syl 17 . . . 4  |-  ( ph  ->  ( 1st `  <. F ,  G >. )  =  F )
1913, 18coeq12d 5286 . . 3  |-  ( ph  ->  ( ( 1st `  <. H ,  K >. )  o.  ( 1st `  <. F ,  G >. )
)  =  ( H  o.  F ) )
20 op2ndg 7181 . . . . . . . 8  |-  ( ( H  e.  _V  /\  K  e.  _V )  ->  ( 2nd `  <. H ,  K >. )  =  K )
2111, 20syl 17 . . . . . . 7  |-  ( ph  ->  ( 2nd `  <. H ,  K >. )  =  K )
22213ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( 2nd ` 
<. H ,  K >. )  =  K )
23183ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( 1st ` 
<. F ,  G >. )  =  F )
2423fveq1d 6193 . . . . . 6  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( ( 1st `  <. F ,  G >. ) `  x )  =  ( F `  x ) )
2523fveq1d 6193 . . . . . 6  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( ( 1st `  <. F ,  G >. ) `  y )  =  ( F `  y ) )
2622, 24, 25oveq123d 6671 . . . . 5  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( (
( 1st `  <. F ,  G >. ) `  x ) ( 2nd `  <. H ,  K >. ) ( ( 1st `  <. F ,  G >. ) `  y ) )  =  ( ( F `  x ) K ( F `  y ) ) )
27 op2ndg 7181 . . . . . . . 8  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( 2nd `  <. F ,  G >. )  =  G )
2816, 27syl 17 . . . . . . 7  |-  ( ph  ->  ( 2nd `  <. F ,  G >. )  =  G )
29283ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( 2nd ` 
<. F ,  G >. )  =  G )
3029oveqd 6667 . . . . 5  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x
( 2nd `  <. F ,  G >. )
y )  =  ( x G y ) )
3126, 30coeq12d 5286 . . . 4  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( (
( ( 1st `  <. F ,  G >. ) `  x ) ( 2nd `  <. H ,  K >. ) ( ( 1st `  <. F ,  G >. ) `  y ) )  o.  ( x ( 2nd `  <. F ,  G >. )
y ) )  =  ( ( ( F `
 x ) K ( F `  y
) )  o.  (
x G y ) ) )
3231mpt2eq3dva 6719 . . 3  |-  ( ph  ->  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  <. F ,  G >. ) `  x
) ( 2nd `  <. H ,  K >. )
( ( 1st `  <. F ,  G >. ) `  y ) )  o.  ( x ( 2nd `  <. F ,  G >. ) y ) ) )  =  ( x  e.  B ,  y  e.  B  |->  ( ( ( F `  x
) K ( F `
 y ) )  o.  ( x G y ) ) ) )
3319, 32opeq12d 4410 . 2  |-  ( ph  -> 
<. ( ( 1st `  <. H ,  K >. )  o.  ( 1st `  <. F ,  G >. )
) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  <. F ,  G >. ) `  x ) ( 2nd `  <. H ,  K >. ) ( ( 1st `  <. F ,  G >. ) `  y ) )  o.  ( x ( 2nd `  <. F ,  G >. )
y ) ) )
>.  =  <. ( H  o.  F ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( F `
 x ) K ( F `  y
) )  o.  (
x G y ) ) ) >. )
348, 33eqtrd 2656 1  |-  ( ph  ->  ( <. H ,  K >.  o.func 
<. F ,  G >. )  =  <. ( H  o.  F ) ,  ( x  e.  B , 
y  e.  B  |->  ( ( ( F `  x ) K ( F `  y ) )  o.  ( x G y ) ) ) >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183   class class class wbr 4653    o. ccom 5118   Rel wrel 5119   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857    Func cfunc 16514    o.func ccofu 16516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-func 16518  df-cofu 16520
This theorem is referenced by:  catcisolem  16756  funcrngcsetcALT  41999
  Copyright terms: Public domain W3C validator