MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofuval Structured version   Visualization version   Unicode version

Theorem cofuval 16542
Description: Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b  |-  B  =  ( Base `  C
)
cofuval.f  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
cofuval.g  |-  ( ph  ->  G  e.  ( D 
Func  E ) )
Assertion
Ref Expression
cofuval  |-  ( ph  ->  ( G  o.func  F )  =  <. ( ( 1st `  G )  o.  ( 1st `  F ) ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) ) >. )
Distinct variable groups:    x, y, B    x, F, y    x, G, y    ph, x, y
Allowed substitution hints:    C( x, y)    D( x, y)    E( x, y)

Proof of Theorem cofuval
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cofu 16520 . . 3  |-  o.func  =  (
g  e.  _V , 
f  e.  _V  |->  <.
( ( 1st `  g
)  o.  ( 1st `  f ) ) ,  ( x  e.  dom  dom  ( 2nd `  f
) ,  y  e. 
dom  dom  ( 2nd `  f
)  |->  ( ( ( ( 1st `  f
) `  x )
( 2nd `  g
) ( ( 1st `  f ) `  y
) )  o.  (
x ( 2nd `  f
) y ) ) ) >. )
21a1i 11 . 2  |-  ( ph  ->  o.func  =  ( g  e. 
_V ,  f  e. 
_V  |->  <. ( ( 1st `  g )  o.  ( 1st `  f ) ) ,  ( x  e. 
dom  dom  ( 2nd `  f
) ,  y  e. 
dom  dom  ( 2nd `  f
)  |->  ( ( ( ( 1st `  f
) `  x )
( 2nd `  g
) ( ( 1st `  f ) `  y
) )  o.  (
x ( 2nd `  f
) y ) ) ) >. ) )
3 simprl 794 . . . . 5  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
g  =  G )
43fveq2d 6195 . . . 4  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( 1st `  g
)  =  ( 1st `  G ) )
5 simprr 796 . . . . 5  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
f  =  F )
65fveq2d 6195 . . . 4  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( 1st `  f
)  =  ( 1st `  F ) )
74, 6coeq12d 5286 . . 3  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( ( 1st `  g
)  o.  ( 1st `  f ) )  =  ( ( 1st `  G
)  o.  ( 1st `  F ) ) )
85fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( 2nd `  f
)  =  ( 2nd `  F ) )
98dmeqd 5326 . . . . . . 7  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  ->  dom  ( 2nd `  f
)  =  dom  ( 2nd `  F ) )
10 cofuval.b . . . . . . . . . 10  |-  B  =  ( Base `  C
)
11 relfunc 16522 . . . . . . . . . . 11  |-  Rel  ( C  Func  D )
12 cofuval.f . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
13 1st2ndbr 7217 . . . . . . . . . . 11  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
1411, 12, 13sylancr 695 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
1510, 14funcfn2 16529 . . . . . . . . 9  |-  ( ph  ->  ( 2nd `  F
)  Fn  ( B  X.  B ) )
16 fndm 5990 . . . . . . . . 9  |-  ( ( 2nd `  F )  Fn  ( B  X.  B )  ->  dom  ( 2nd `  F )  =  ( B  X.  B ) )
1715, 16syl 17 . . . . . . . 8  |-  ( ph  ->  dom  ( 2nd `  F
)  =  ( B  X.  B ) )
1817adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  ->  dom  ( 2nd `  F
)  =  ( B  X.  B ) )
199, 18eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  ->  dom  ( 2nd `  f
)  =  ( B  X.  B ) )
2019dmeqd 5326 . . . . 5  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  ->  dom  dom  ( 2nd `  f
)  =  dom  ( B  X.  B ) )
21 dmxpid 5345 . . . . 5  |-  dom  ( B  X.  B )  =  B
2220, 21syl6eq 2672 . . . 4  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  ->  dom  dom  ( 2nd `  f
)  =  B )
233fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( 2nd `  g
)  =  ( 2nd `  G ) )
246fveq1d 6193 . . . . . 6  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( ( 1st `  f
) `  x )  =  ( ( 1st `  F ) `  x
) )
256fveq1d 6193 . . . . . 6  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( ( 1st `  f
) `  y )  =  ( ( 1st `  F ) `  y
) )
2623, 24, 25oveq123d 6671 . . . . 5  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( ( ( 1st `  f ) `  x
) ( 2nd `  g
) ( ( 1st `  f ) `  y
) )  =  ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) ) )
278oveqd 6667 . . . . 5  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( x ( 2nd `  f ) y )  =  ( x ( 2nd `  F ) y ) )
2826, 27coeq12d 5286 . . . 4  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( ( ( ( 1st `  f ) `
 x ) ( 2nd `  g ) ( ( 1st `  f
) `  y )
)  o.  ( x ( 2nd `  f
) y ) )  =  ( ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) )
2922, 22, 28mpt2eq123dv 6717 . . 3  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( x  e.  dom  dom  ( 2nd `  f
) ,  y  e. 
dom  dom  ( 2nd `  f
)  |->  ( ( ( ( 1st `  f
) `  x )
( 2nd `  g
) ( ( 1st `  f ) `  y
) )  o.  (
x ( 2nd `  f
) y ) ) )  =  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) ) )
307, 29opeq12d 4410 . 2  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  ->  <. ( ( 1st `  g
)  o.  ( 1st `  f ) ) ,  ( x  e.  dom  dom  ( 2nd `  f
) ,  y  e. 
dom  dom  ( 2nd `  f
)  |->  ( ( ( ( 1st `  f
) `  x )
( 2nd `  g
) ( ( 1st `  f ) `  y
) )  o.  (
x ( 2nd `  f
) y ) ) ) >.  =  <. ( ( 1st `  G
)  o.  ( 1st `  F ) ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F ) `
 x ) ( 2nd `  G ) ( ( 1st `  F
) `  y )
)  o.  ( x ( 2nd `  F
) y ) ) ) >. )
31 cofuval.g . . 3  |-  ( ph  ->  G  e.  ( D 
Func  E ) )
32 elex 3212 . . 3  |-  ( G  e.  ( D  Func  E )  ->  G  e.  _V )
3331, 32syl 17 . 2  |-  ( ph  ->  G  e.  _V )
34 elex 3212 . . 3  |-  ( F  e.  ( C  Func  D )  ->  F  e.  _V )
3512, 34syl 17 . 2  |-  ( ph  ->  F  e.  _V )
36 opex 4932 . . 3  |-  <. (
( 1st `  G
)  o.  ( 1st `  F ) ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F ) `
 x ) ( 2nd `  G ) ( ( 1st `  F
) `  y )
)  o.  ( x ( 2nd `  F
) y ) ) ) >.  e.  _V
3736a1i 11 . 2  |-  ( ph  -> 
<. ( ( 1st `  G
)  o.  ( 1st `  F ) ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F ) `
 x ) ( 2nd `  G ) ( ( 1st `  F
) `  y )
)  o.  ( x ( 2nd `  F
) y ) ) ) >.  e.  _V )
382, 30, 33, 35, 37ovmpt2d 6788 1  |-  ( ph  ->  ( G  o.func  F )  =  <. ( ( 1st `  G )  o.  ( 1st `  F ) ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) ) >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183   class class class wbr 4653    X. cxp 5112   dom cdm 5114    o. ccom 5118   Rel wrel 5119    Fn wfn 5883   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857    Func cfunc 16514    o.func ccofu 16516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-func 16518  df-cofu 16520
This theorem is referenced by:  cofu1st  16543  cofu2nd  16545  cofuval2  16547  cofucl  16548  cofuass  16549  cofulid  16550  cofurid  16551  prf1st  16844  prf2nd  16845
  Copyright terms: Public domain W3C validator