MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofu2 Structured version   Visualization version   Unicode version

Theorem cofu2 16546
Description: Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b  |-  B  =  ( Base `  C
)
cofuval.f  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
cofuval.g  |-  ( ph  ->  G  e.  ( D 
Func  E ) )
cofu2nd.x  |-  ( ph  ->  X  e.  B )
cofu2nd.y  |-  ( ph  ->  Y  e.  B )
cofu2.h  |-  H  =  ( Hom  `  C
)
cofu2.y  |-  ( ph  ->  R  e.  ( X H Y ) )
Assertion
Ref Expression
cofu2  |-  ( ph  ->  ( ( X ( 2nd `  ( G  o.func 
F ) ) Y ) `  R )  =  ( ( ( ( 1st `  F
) `  X )
( 2nd `  G
) ( ( 1st `  F ) `  Y
) ) `  (
( X ( 2nd `  F ) Y ) `
 R ) ) )

Proof of Theorem cofu2
StepHypRef Expression
1 cofuval.b . . . 4  |-  B  =  ( Base `  C
)
2 cofuval.f . . . 4  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
3 cofuval.g . . . 4  |-  ( ph  ->  G  e.  ( D 
Func  E ) )
4 cofu2nd.x . . . 4  |-  ( ph  ->  X  e.  B )
5 cofu2nd.y . . . 4  |-  ( ph  ->  Y  e.  B )
61, 2, 3, 4, 5cofu2nd 16545 . . 3  |-  ( ph  ->  ( X ( 2nd `  ( G  o.func  F )
) Y )  =  ( ( ( ( 1st `  F ) `
 X ) ( 2nd `  G ) ( ( 1st `  F
) `  Y )
)  o.  ( X ( 2nd `  F
) Y ) ) )
76fveq1d 6193 . 2  |-  ( ph  ->  ( ( X ( 2nd `  ( G  o.func 
F ) ) Y ) `  R )  =  ( ( ( ( ( 1st `  F
) `  X )
( 2nd `  G
) ( ( 1st `  F ) `  Y
) )  o.  ( X ( 2nd `  F
) Y ) ) `
 R ) )
8 cofu2.h . . . 4  |-  H  =  ( Hom  `  C
)
9 eqid 2622 . . . 4  |-  ( Hom  `  D )  =  ( Hom  `  D )
10 relfunc 16522 . . . . 5  |-  Rel  ( C  Func  D )
11 1st2ndbr 7217 . . . . 5  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
1210, 2, 11sylancr 695 . . . 4  |-  ( ph  ->  ( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
131, 8, 9, 12, 4, 5funcf2 16528 . . 3  |-  ( ph  ->  ( X ( 2nd `  F ) Y ) : ( X H Y ) --> ( ( ( 1st `  F
) `  X )
( Hom  `  D ) ( ( 1st `  F
) `  Y )
) )
14 cofu2.y . . 3  |-  ( ph  ->  R  e.  ( X H Y ) )
15 fvco3 6275 . . 3  |-  ( ( ( X ( 2nd `  F ) Y ) : ( X H Y ) --> ( ( ( 1st `  F
) `  X )
( Hom  `  D ) ( ( 1st `  F
) `  Y )
)  /\  R  e.  ( X H Y ) )  ->  ( (
( ( ( 1st `  F ) `  X
) ( 2nd `  G
) ( ( 1st `  F ) `  Y
) )  o.  ( X ( 2nd `  F
) Y ) ) `
 R )  =  ( ( ( ( 1st `  F ) `
 X ) ( 2nd `  G ) ( ( 1st `  F
) `  Y )
) `  ( ( X ( 2nd `  F
) Y ) `  R ) ) )
1613, 14, 15syl2anc 693 . 2  |-  ( ph  ->  ( ( ( ( ( 1st `  F
) `  X )
( 2nd `  G
) ( ( 1st `  F ) `  Y
) )  o.  ( X ( 2nd `  F
) Y ) ) `
 R )  =  ( ( ( ( 1st `  F ) `
 X ) ( 2nd `  G ) ( ( 1st `  F
) `  Y )
) `  ( ( X ( 2nd `  F
) Y ) `  R ) ) )
177, 16eqtrd 2656 1  |-  ( ph  ->  ( ( X ( 2nd `  ( G  o.func 
F ) ) Y ) `  R )  =  ( ( ( ( 1st `  F
) `  X )
( 2nd `  G
) ( ( 1st `  F ) `  Y
) ) `  (
( X ( 2nd `  F ) Y ) `
 R ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   class class class wbr 4653    o. ccom 5118   Rel wrel 5119   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Hom chom 15952    Func cfunc 16514    o.func ccofu 16516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-func 16518  df-cofu 16520
This theorem is referenced by:  cofucl  16548  1st2ndprf  16846  uncf2  16877  yonedalem22  16918
  Copyright terms: Public domain W3C validator