![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > colperpexlem2 | Structured version Visualization version Unicode version |
Description: Lemma for colperpex 25625. Second part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
Ref | Expression |
---|---|
colperpex.p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
colperpex.d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
colperpex.i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
colperpex.l |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
colperpex.g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
colperpexlem.s |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
colperpexlem.m |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
colperpexlem.n |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
colperpexlem.k |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
colperpexlem.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
colperpexlem.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
colperpexlem.c |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
colperpexlem.q |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
colperpexlem.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
colperpexlem.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
colperpexlem2.e |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
colperpexlem2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | colperpexlem2.e |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | simpr 477 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | fveq2d 6195 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | colperpexlem.m |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | colperpexlem.k |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 3, 4, 5 | 3eqtr4g 2681 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | fveq1d 6193 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | colperpex.p |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | colperpex.d |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | colperpex.i |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | colperpex.l |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | colperpexlem.s |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | colperpex.g |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | colperpexlem.a |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
15 | colperpexlem.c |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 8, 9, 10, 11, 12, 13, 14, 4, 15 | mirmir 25557 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 16 | adantr 481 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | colperpexlem.2 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
19 | 18 | adantr 481 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 7, 17, 19 | 3eqtr3rd 2665 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | colperpexlem.b |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
22 | colperpexlem.n |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | 8, 9, 10, 11, 12, 13, 21, 22, 15 | mirinv 25561 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 23 | adantr 481 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 20, 24 | mpbid 222 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 25 | ex 450 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | 26 | necon3ad 2807 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 1, 27 | mpd 15 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 28 | neqned 2801 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-trkgc 25347 df-trkgb 25348 df-trkgcb 25349 df-trkg 25352 df-mir 25548 |
This theorem is referenced by: colperpexlem3 25624 |
Copyright terms: Public domain | W3C validator |