| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > colperpexlem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma for colperpex 25625. Second part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
| Ref | Expression |
|---|---|
| colperpex.p |
|
| colperpex.d |
|
| colperpex.i |
|
| colperpex.l |
|
| colperpex.g |
|
| colperpexlem.s |
|
| colperpexlem.m |
|
| colperpexlem.n |
|
| colperpexlem.k |
|
| colperpexlem.a |
|
| colperpexlem.b |
|
| colperpexlem.c |
|
| colperpexlem.q |
|
| colperpexlem.1 |
|
| colperpexlem.2 |
|
| colperpexlem2.e |
|
| Ref | Expression |
|---|---|
| colperpexlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | colperpexlem2.e |
. . 3
| |
| 2 | simpr 477 |
. . . . . . . . . 10
| |
| 3 | 2 | fveq2d 6195 |
. . . . . . . . 9
|
| 4 | colperpexlem.m |
. . . . . . . . 9
| |
| 5 | colperpexlem.k |
. . . . . . . . 9
| |
| 6 | 3, 4, 5 | 3eqtr4g 2681 |
. . . . . . . 8
|
| 7 | 6 | fveq1d 6193 |
. . . . . . 7
|
| 8 | colperpex.p |
. . . . . . . . 9
| |
| 9 | colperpex.d |
. . . . . . . . 9
| |
| 10 | colperpex.i |
. . . . . . . . 9
| |
| 11 | colperpex.l |
. . . . . . . . 9
| |
| 12 | colperpexlem.s |
. . . . . . . . 9
| |
| 13 | colperpex.g |
. . . . . . . . 9
| |
| 14 | colperpexlem.a |
. . . . . . . . 9
| |
| 15 | colperpexlem.c |
. . . . . . . . 9
| |
| 16 | 8, 9, 10, 11, 12, 13, 14, 4, 15 | mirmir 25557 |
. . . . . . . 8
|
| 17 | 16 | adantr 481 |
. . . . . . 7
|
| 18 | colperpexlem.2 |
. . . . . . . 8
| |
| 19 | 18 | adantr 481 |
. . . . . . 7
|
| 20 | 7, 17, 19 | 3eqtr3rd 2665 |
. . . . . 6
|
| 21 | colperpexlem.b |
. . . . . . . 8
| |
| 22 | colperpexlem.n |
. . . . . . . 8
| |
| 23 | 8, 9, 10, 11, 12, 13, 21, 22, 15 | mirinv 25561 |
. . . . . . 7
|
| 24 | 23 | adantr 481 |
. . . . . 6
|
| 25 | 20, 24 | mpbid 222 |
. . . . 5
|
| 26 | 25 | ex 450 |
. . . 4
|
| 27 | 26 | necon3ad 2807 |
. . 3
|
| 28 | 1, 27 | mpd 15 |
. 2
|
| 29 | 28 | neqned 2801 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-trkgc 25347 df-trkgb 25348 df-trkgcb 25349 df-trkg 25352 df-mir 25548 |
| This theorem is referenced by: colperpexlem3 25624 |
| Copyright terms: Public domain | W3C validator |