MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colperpexlem2 Structured version   Visualization version   Unicode version

Theorem colperpexlem2 25623
Description: Lemma for colperpex 25625. Second part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 10-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p  |-  P  =  ( Base `  G
)
colperpex.d  |-  .-  =  ( dist `  G )
colperpex.i  |-  I  =  (Itv `  G )
colperpex.l  |-  L  =  (LineG `  G )
colperpex.g  |-  ( ph  ->  G  e. TarskiG )
colperpexlem.s  |-  S  =  (pInvG `  G )
colperpexlem.m  |-  M  =  ( S `  A
)
colperpexlem.n  |-  N  =  ( S `  B
)
colperpexlem.k  |-  K  =  ( S `  Q
)
colperpexlem.a  |-  ( ph  ->  A  e.  P )
colperpexlem.b  |-  ( ph  ->  B  e.  P )
colperpexlem.c  |-  ( ph  ->  C  e.  P )
colperpexlem.q  |-  ( ph  ->  Q  e.  P )
colperpexlem.1  |-  ( ph  ->  <" A B C ">  e.  (∟G `  G ) )
colperpexlem.2  |-  ( ph  ->  ( K `  ( M `  C )
)  =  ( N `
 C ) )
colperpexlem2.e  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
colperpexlem2  |-  ( ph  ->  A  =/=  Q )

Proof of Theorem colperpexlem2
StepHypRef Expression
1 colperpexlem2.e . . 3  |-  ( ph  ->  B  =/=  C )
2 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  A  =  Q )  ->  A  =  Q )
32fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  A  =  Q )  ->  ( S `  A )  =  ( S `  Q ) )
4 colperpexlem.m . . . . . . . . 9  |-  M  =  ( S `  A
)
5 colperpexlem.k . . . . . . . . 9  |-  K  =  ( S `  Q
)
63, 4, 53eqtr4g 2681 . . . . . . . 8  |-  ( (
ph  /\  A  =  Q )  ->  M  =  K )
76fveq1d 6193 . . . . . . 7  |-  ( (
ph  /\  A  =  Q )  ->  ( M `  ( M `  C ) )  =  ( K `  ( M `  C )
) )
8 colperpex.p . . . . . . . . 9  |-  P  =  ( Base `  G
)
9 colperpex.d . . . . . . . . 9  |-  .-  =  ( dist `  G )
10 colperpex.i . . . . . . . . 9  |-  I  =  (Itv `  G )
11 colperpex.l . . . . . . . . 9  |-  L  =  (LineG `  G )
12 colperpexlem.s . . . . . . . . 9  |-  S  =  (pInvG `  G )
13 colperpex.g . . . . . . . . 9  |-  ( ph  ->  G  e. TarskiG )
14 colperpexlem.a . . . . . . . . 9  |-  ( ph  ->  A  e.  P )
15 colperpexlem.c . . . . . . . . 9  |-  ( ph  ->  C  e.  P )
168, 9, 10, 11, 12, 13, 14, 4, 15mirmir 25557 . . . . . . . 8  |-  ( ph  ->  ( M `  ( M `  C )
)  =  C )
1716adantr 481 . . . . . . 7  |-  ( (
ph  /\  A  =  Q )  ->  ( M `  ( M `  C ) )  =  C )
18 colperpexlem.2 . . . . . . . 8  |-  ( ph  ->  ( K `  ( M `  C )
)  =  ( N `
 C ) )
1918adantr 481 . . . . . . 7  |-  ( (
ph  /\  A  =  Q )  ->  ( K `  ( M `  C ) )  =  ( N `  C
) )
207, 17, 193eqtr3rd 2665 . . . . . 6  |-  ( (
ph  /\  A  =  Q )  ->  ( N `  C )  =  C )
21 colperpexlem.b . . . . . . . 8  |-  ( ph  ->  B  e.  P )
22 colperpexlem.n . . . . . . . 8  |-  N  =  ( S `  B
)
238, 9, 10, 11, 12, 13, 21, 22, 15mirinv 25561 . . . . . . 7  |-  ( ph  ->  ( ( N `  C )  =  C  <-> 
B  =  C ) )
2423adantr 481 . . . . . 6  |-  ( (
ph  /\  A  =  Q )  ->  (
( N `  C
)  =  C  <->  B  =  C ) )
2520, 24mpbid 222 . . . . 5  |-  ( (
ph  /\  A  =  Q )  ->  B  =  C )
2625ex 450 . . . 4  |-  ( ph  ->  ( A  =  Q  ->  B  =  C ) )
2726necon3ad 2807 . . 3  |-  ( ph  ->  ( B  =/=  C  ->  -.  A  =  Q ) )
281, 27mpd 15 . 2  |-  ( ph  ->  -.  A  =  Q )
2928neqned 2801 1  |-  ( ph  ->  A  =/=  Q )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547  ∟Gcrag 25588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-mir 25548
This theorem is referenced by:  colperpexlem3  25624
  Copyright terms: Public domain W3C validator