Proof of Theorem colperpexlem1
Step | Hyp | Ref
| Expression |
1 | | colperpex.p |
. . . 4
     |
2 | | colperpex.d |
. . . 4
     |
3 | | colperpex.i |
. . . 4
Itv   |
4 | | colperpex.g |
. . . 4

TarskiG |
5 | | colperpexlem.q |
. . . 4
   |
6 | | colperpexlem.b |
. . . 4
   |
7 | | colperpex.l |
. . . . 5
LineG   |
8 | | colperpexlem.s |
. . . . 5
pInvG   |
9 | | colperpexlem.a |
. . . . 5
   |
10 | | colperpexlem.m |
. . . . 5
     |
11 | 1, 2, 3, 7, 8, 4, 9, 10, 5 | mircl 25556 |
. . . 4
       |
12 | | colperpexlem.c |
. . . . . 6
   |
13 | 1, 2, 3, 7, 8, 4, 9, 10, 12 | mircl 25556 |
. . . . 5
       |
14 | | eqid 2622 |
. . . . . 6
         |
15 | 1, 2, 3, 7, 8, 4, 6, 14, 12 | mircl 25556 |
. . . . 5
           |
16 | 1, 2, 3, 7, 8, 4, 9, 10, 15 | mircl 25556 |
. . . . 5
               |
17 | | colperpexlem.2 |
. . . . . . . 8
               |
18 | | colperpexlem.n |
. . . . . . . . 9
     |
19 | 1, 2, 3, 7, 8, 4, 6, 18, 12 | mircl 25556 |
. . . . . . . 8
       |
20 | 17, 19 | eqeltrd 2701 |
. . . . . . 7
           |
21 | | colperpexlem.k |
. . . . . . . 8
     |
22 | 1, 2, 3, 7, 8, 4, 5, 21, 13 | mirbtwn 25553 |
. . . . . . 7
                   |
23 | 1, 2, 3, 4, 20, 5,
13, 22 | tgbtwncom 25383 |
. . . . . 6
                   |
24 | 18 | fveq1i 6192 |
. . . . . . . 8
             |
25 | 17, 24 | syl6eq 2672 |
. . . . . . 7
                   |
26 | 25 | oveq2d 6666 |
. . . . . 6
                                   |
27 | 23, 26 | eleqtrd 2703 |
. . . . 5
                   |
28 | 1, 2, 3, 4, 13, 5,
15, 27 | tgbtwncom 25383 |
. . . . . . 7
                   |
29 | 1, 2, 3, 7, 8, 4, 9, 10, 15, 5, 13, 28 | mirbtwni 25566 |
. . . . . 6
                               |
30 | 1, 2, 3, 7, 8, 4, 9, 10, 12 | mirmir 25557 |
. . . . . . 7
           |
31 | 30 | oveq2d 6666 |
. . . . . 6
                                           |
32 | 29, 31 | eleqtrd 2703 |
. . . . 5
                       |
33 | 1, 2, 3, 4, 13, 15 | axtgcgrrflx 25361 |
. . . . . 6
                               |
34 | 1, 2, 3, 7, 8, 4, 9, 10, 15, 13 | miriso 25565 |
. . . . . 6
                                       |
35 | 30 | oveq2d 6666 |
. . . . . 6
                                       |
36 | 33, 34, 35 | 3eqtr2d 2662 |
. . . . 5
                               |
37 | 25 | oveq2d 6666 |
. . . . . . 7
                       |
38 | 1, 2, 3, 7, 8, 4, 5, 21, 13 | mircgr 25552 |
. . . . . . 7
                   |
39 | 37, 38 | eqtr3d 2658 |
. . . . . 6
                   |
40 | 1, 2, 3, 7, 8, 4, 9, 10, 5, 13 | miriso 25565 |
. . . . . 6
                       |
41 | 30 | oveq2d 6666 |
. . . . . 6
                       |
42 | 39, 40, 41 | 3eqtr2d 2662 |
. . . . 5
                   |
43 | 1, 2, 3, 7, 8, 4, 9, 10, 6 | mirmir 25557 |
. . . . . . . . . 10
           |
44 | | eqidd 2623 |
. . . . . . . . . 10
           |
45 | | eqidd 2623 |
. . . . . . . . . 10
           |
46 | 43, 44, 45 | s3eqd 13609 |
. . . . . . . . 9
                                       |
47 | 1, 2, 3, 7, 8, 4, 9, 10, 6 | mircl 25556 |
. . . . . . . . . 10
       |
48 | | simpr 477 |
. . . . . . . . . . . . . . 15
 
   |
49 | 48 | fveq2d 6195 |
. . . . . . . . . . . . . 14
 
           |
50 | 4 | adantr 481 |
. . . . . . . . . . . . . . 15
 
 TarskiG |
51 | 9 | adantr 481 |
. . . . . . . . . . . . . . 15
 
   |
52 | 1, 2, 3, 7, 8, 50,
51, 10 | mircinv 25563 |
. . . . . . . . . . . . . 14
 
       |
53 | 49, 52 | eqtr3d 2658 |
. . . . . . . . . . . . 13
 
       |
54 | | eqidd 2623 |
. . . . . . . . . . . . 13
 
   |
55 | | eqidd 2623 |
. . . . . . . . . . . . 13
 
   |
56 | 53, 54, 55 | s3eqd 13609 |
. . . . . . . . . . . 12
 
                   |
57 | | colperpexlem.1 |
. . . . . . . . . . . . 13
       ∟G    |
58 | 57 | adantr 481 |
. . . . . . . . . . . 12
 
       ∟G    |
59 | 56, 58 | eqeltrd 2701 |
. . . . . . . . . . 11
 
           ∟G    |
60 | 4 | adantr 481 |
. . . . . . . . . . . 12
 

TarskiG |
61 | 9 | adantr 481 |
. . . . . . . . . . . 12
 

  |
62 | 6 | adantr 481 |
. . . . . . . . . . . 12
 

  |
63 | 12 | adantr 481 |
. . . . . . . . . . . 12
 

  |
64 | 1, 2, 3, 7, 8, 60,
61, 10, 62 | mircl 25556 |
. . . . . . . . . . . 12
 

      |
65 | 57 | adantr 481 |
. . . . . . . . . . . 12
 

      ∟G    |
66 | | simpr 477 |
. . . . . . . . . . . 12
 

  |
67 | 1, 2, 3, 7, 8, 60,
61, 10, 62 | mirbtwn 25553 |
. . . . . . . . . . . . . 14
 

          |
68 | 1, 7, 3, 60, 64, 62, 61, 67 | btwncolg1 25450 |
. . . . . . . . . . . . 13
 

                |
69 | 1, 7, 3, 60, 64, 62, 61, 68 | colcom 25453 |
. . . . . . . . . . . 12
 

                |
70 | 1, 2, 3, 7, 8, 60,
61, 62, 63, 64, 65, 66, 69 | ragcol 25594 |
. . . . . . . . . . 11
 

          ∟G    |
71 | 59, 70 | pm2.61dane 2881 |
. . . . . . . . . 10
           ∟G    |
72 | 1, 2, 3, 7, 8, 4, 47, 6, 12, 71, 10, 9 | mirrag 25596 |
. . . . . . . . 9
                       ∟G    |
73 | 46, 72 | eqeltrrd 2702 |
. . . . . . . 8
               ∟G    |
74 | 1, 2, 3, 7, 8, 4, 6, 47, 13 | israg 25592 |
. . . . . . . 8
                ∟G                             |
75 | 73, 74 | mpbid 222 |
. . . . . . 7
                           |
76 | 1, 2, 3, 7, 8, 4, 9, 10, 12, 6 | mirmir2 25569 |
. . . . . . . 8
                               |
77 | 76 | oveq2d 6666 |
. . . . . . 7
                                   |
78 | 75, 77 | eqtr4d 2659 |
. . . . . 6
                       |
79 | 1, 2, 3, 4, 6, 13,
6, 16, 78 | tgcgrcomlr 25375 |
. . . . 5
                       |
80 | 1, 2, 3, 7, 8, 4, 6, 14, 12 | mircgr 25552 |
. . . . . 6
               |
81 | 1, 2, 3, 4, 6, 15,
6, 12, 80 | tgcgrcomlr 25375 |
. . . . 5
               |
82 | 1, 2, 3, 4, 13, 5,
15, 6, 16, 11, 12, 6, 27, 32, 36, 42, 79, 81 | tgifscgr 25403 |
. . . 4
           |
83 | 1, 2, 3, 4, 5, 6, 11, 6, 82 | tgcgrcomlr 25375 |
. . 3
           |
84 | 10 | fveq1i 6192 |
. . . 4
             |
85 | 84 | oveq2i 6661 |
. . 3
                 |
86 | 83, 85 | syl6eq 2672 |
. 2
               |
87 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | israg 25592 |
. 2
        ∟G 
               |
88 | 86, 87 | mpbird 247 |
1
       ∟G    |