Proof of Theorem colperpexlem1
| Step | Hyp | Ref
| Expression |
| 1 | | colperpex.p |
. . . 4
     |
| 2 | | colperpex.d |
. . . 4
     |
| 3 | | colperpex.i |
. . . 4
Itv   |
| 4 | | colperpex.g |
. . . 4

TarskiG |
| 5 | | colperpexlem.q |
. . . 4
   |
| 6 | | colperpexlem.b |
. . . 4
   |
| 7 | | colperpex.l |
. . . . 5
LineG   |
| 8 | | colperpexlem.s |
. . . . 5
pInvG   |
| 9 | | colperpexlem.a |
. . . . 5
   |
| 10 | | colperpexlem.m |
. . . . 5
     |
| 11 | 1, 2, 3, 7, 8, 4, 9, 10, 5 | mircl 25556 |
. . . 4
       |
| 12 | | colperpexlem.c |
. . . . . 6
   |
| 13 | 1, 2, 3, 7, 8, 4, 9, 10, 12 | mircl 25556 |
. . . . 5
       |
| 14 | | eqid 2622 |
. . . . . 6
         |
| 15 | 1, 2, 3, 7, 8, 4, 6, 14, 12 | mircl 25556 |
. . . . 5
           |
| 16 | 1, 2, 3, 7, 8, 4, 9, 10, 15 | mircl 25556 |
. . . . 5
               |
| 17 | | colperpexlem.2 |
. . . . . . . 8
               |
| 18 | | colperpexlem.n |
. . . . . . . . 9
     |
| 19 | 1, 2, 3, 7, 8, 4, 6, 18, 12 | mircl 25556 |
. . . . . . . 8
       |
| 20 | 17, 19 | eqeltrd 2701 |
. . . . . . 7
           |
| 21 | | colperpexlem.k |
. . . . . . . 8
     |
| 22 | 1, 2, 3, 7, 8, 4, 5, 21, 13 | mirbtwn 25553 |
. . . . . . 7
                   |
| 23 | 1, 2, 3, 4, 20, 5,
13, 22 | tgbtwncom 25383 |
. . . . . 6
                   |
| 24 | 18 | fveq1i 6192 |
. . . . . . . 8
             |
| 25 | 17, 24 | syl6eq 2672 |
. . . . . . 7
                   |
| 26 | 25 | oveq2d 6666 |
. . . . . 6
                                   |
| 27 | 23, 26 | eleqtrd 2703 |
. . . . 5
                   |
| 28 | 1, 2, 3, 4, 13, 5,
15, 27 | tgbtwncom 25383 |
. . . . . . 7
                   |
| 29 | 1, 2, 3, 7, 8, 4, 9, 10, 15, 5, 13, 28 | mirbtwni 25566 |
. . . . . 6
                               |
| 30 | 1, 2, 3, 7, 8, 4, 9, 10, 12 | mirmir 25557 |
. . . . . . 7
           |
| 31 | 30 | oveq2d 6666 |
. . . . . 6
                                           |
| 32 | 29, 31 | eleqtrd 2703 |
. . . . 5
                       |
| 33 | 1, 2, 3, 4, 13, 15 | axtgcgrrflx 25361 |
. . . . . 6
                               |
| 34 | 1, 2, 3, 7, 8, 4, 9, 10, 15, 13 | miriso 25565 |
. . . . . 6
                                       |
| 35 | 30 | oveq2d 6666 |
. . . . . 6
                                       |
| 36 | 33, 34, 35 | 3eqtr2d 2662 |
. . . . 5
                               |
| 37 | 25 | oveq2d 6666 |
. . . . . . 7
                       |
| 38 | 1, 2, 3, 7, 8, 4, 5, 21, 13 | mircgr 25552 |
. . . . . . 7
                   |
| 39 | 37, 38 | eqtr3d 2658 |
. . . . . 6
                   |
| 40 | 1, 2, 3, 7, 8, 4, 9, 10, 5, 13 | miriso 25565 |
. . . . . 6
                       |
| 41 | 30 | oveq2d 6666 |
. . . . . 6
                       |
| 42 | 39, 40, 41 | 3eqtr2d 2662 |
. . . . 5
                   |
| 43 | 1, 2, 3, 7, 8, 4, 9, 10, 6 | mirmir 25557 |
. . . . . . . . . 10
           |
| 44 | | eqidd 2623 |
. . . . . . . . . 10
           |
| 45 | | eqidd 2623 |
. . . . . . . . . 10
           |
| 46 | 43, 44, 45 | s3eqd 13609 |
. . . . . . . . 9
                                       |
| 47 | 1, 2, 3, 7, 8, 4, 9, 10, 6 | mircl 25556 |
. . . . . . . . . 10
       |
| 48 | | simpr 477 |
. . . . . . . . . . . . . . 15
 
   |
| 49 | 48 | fveq2d 6195 |
. . . . . . . . . . . . . 14
 
           |
| 50 | 4 | adantr 481 |
. . . . . . . . . . . . . . 15
 
 TarskiG |
| 51 | 9 | adantr 481 |
. . . . . . . . . . . . . . 15
 
   |
| 52 | 1, 2, 3, 7, 8, 50,
51, 10 | mircinv 25563 |
. . . . . . . . . . . . . 14
 
       |
| 53 | 49, 52 | eqtr3d 2658 |
. . . . . . . . . . . . 13
 
       |
| 54 | | eqidd 2623 |
. . . . . . . . . . . . 13
 
   |
| 55 | | eqidd 2623 |
. . . . . . . . . . . . 13
 
   |
| 56 | 53, 54, 55 | s3eqd 13609 |
. . . . . . . . . . . 12
 
                   |
| 57 | | colperpexlem.1 |
. . . . . . . . . . . . 13
       ∟G    |
| 58 | 57 | adantr 481 |
. . . . . . . . . . . 12
 
       ∟G    |
| 59 | 56, 58 | eqeltrd 2701 |
. . . . . . . . . . 11
 
           ∟G    |
| 60 | 4 | adantr 481 |
. . . . . . . . . . . 12
 

TarskiG |
| 61 | 9 | adantr 481 |
. . . . . . . . . . . 12
 

  |
| 62 | 6 | adantr 481 |
. . . . . . . . . . . 12
 

  |
| 63 | 12 | adantr 481 |
. . . . . . . . . . . 12
 

  |
| 64 | 1, 2, 3, 7, 8, 60,
61, 10, 62 | mircl 25556 |
. . . . . . . . . . . 12
 

      |
| 65 | 57 | adantr 481 |
. . . . . . . . . . . 12
 

      ∟G    |
| 66 | | simpr 477 |
. . . . . . . . . . . 12
 

  |
| 67 | 1, 2, 3, 7, 8, 60,
61, 10, 62 | mirbtwn 25553 |
. . . . . . . . . . . . . 14
 

          |
| 68 | 1, 7, 3, 60, 64, 62, 61, 67 | btwncolg1 25450 |
. . . . . . . . . . . . 13
 

                |
| 69 | 1, 7, 3, 60, 64, 62, 61, 68 | colcom 25453 |
. . . . . . . . . . . 12
 

                |
| 70 | 1, 2, 3, 7, 8, 60,
61, 62, 63, 64, 65, 66, 69 | ragcol 25594 |
. . . . . . . . . . 11
 

          ∟G    |
| 71 | 59, 70 | pm2.61dane 2881 |
. . . . . . . . . 10
           ∟G    |
| 72 | 1, 2, 3, 7, 8, 4, 47, 6, 12, 71, 10, 9 | mirrag 25596 |
. . . . . . . . 9
                       ∟G    |
| 73 | 46, 72 | eqeltrrd 2702 |
. . . . . . . 8
               ∟G    |
| 74 | 1, 2, 3, 7, 8, 4, 6, 47, 13 | israg 25592 |
. . . . . . . 8
                ∟G                             |
| 75 | 73, 74 | mpbid 222 |
. . . . . . 7
                           |
| 76 | 1, 2, 3, 7, 8, 4, 9, 10, 12, 6 | mirmir2 25569 |
. . . . . . . 8
                               |
| 77 | 76 | oveq2d 6666 |
. . . . . . 7
                                   |
| 78 | 75, 77 | eqtr4d 2659 |
. . . . . 6
                       |
| 79 | 1, 2, 3, 4, 6, 13,
6, 16, 78 | tgcgrcomlr 25375 |
. . . . 5
                       |
| 80 | 1, 2, 3, 7, 8, 4, 6, 14, 12 | mircgr 25552 |
. . . . . 6
               |
| 81 | 1, 2, 3, 4, 6, 15,
6, 12, 80 | tgcgrcomlr 25375 |
. . . . 5
               |
| 82 | 1, 2, 3, 4, 13, 5,
15, 6, 16, 11, 12, 6, 27, 32, 36, 42, 79, 81 | tgifscgr 25403 |
. . . 4
           |
| 83 | 1, 2, 3, 4, 5, 6, 11, 6, 82 | tgcgrcomlr 25375 |
. . 3
           |
| 84 | 10 | fveq1i 6192 |
. . . 4
             |
| 85 | 84 | oveq2i 6661 |
. . 3
                 |
| 86 | 83, 85 | syl6eq 2672 |
. 2
               |
| 87 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | israg 25592 |
. 2
        ∟G 
               |
| 88 | 86, 87 | mpbird 247 |
1
       ∟G    |