MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colperpexlem1 Structured version   Visualization version   Unicode version

Theorem colperpexlem1 25622
Description: Lemma for colperp 25621. First part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 27-Oct-2019.)
Hypotheses
Ref Expression
colperpex.p  |-  P  =  ( Base `  G
)
colperpex.d  |-  .-  =  ( dist `  G )
colperpex.i  |-  I  =  (Itv `  G )
colperpex.l  |-  L  =  (LineG `  G )
colperpex.g  |-  ( ph  ->  G  e. TarskiG )
colperpexlem.s  |-  S  =  (pInvG `  G )
colperpexlem.m  |-  M  =  ( S `  A
)
colperpexlem.n  |-  N  =  ( S `  B
)
colperpexlem.k  |-  K  =  ( S `  Q
)
colperpexlem.a  |-  ( ph  ->  A  e.  P )
colperpexlem.b  |-  ( ph  ->  B  e.  P )
colperpexlem.c  |-  ( ph  ->  C  e.  P )
colperpexlem.q  |-  ( ph  ->  Q  e.  P )
colperpexlem.1  |-  ( ph  ->  <" A B C ">  e.  (∟G `  G ) )
colperpexlem.2  |-  ( ph  ->  ( K `  ( M `  C )
)  =  ( N `
 C ) )
Assertion
Ref Expression
colperpexlem1  |-  ( ph  ->  <" B A Q ">  e.  (∟G `  G ) )

Proof of Theorem colperpexlem1
StepHypRef Expression
1 colperpex.p . . . 4  |-  P  =  ( Base `  G
)
2 colperpex.d . . . 4  |-  .-  =  ( dist `  G )
3 colperpex.i . . . 4  |-  I  =  (Itv `  G )
4 colperpex.g . . . 4  |-  ( ph  ->  G  e. TarskiG )
5 colperpexlem.q . . . 4  |-  ( ph  ->  Q  e.  P )
6 colperpexlem.b . . . 4  |-  ( ph  ->  B  e.  P )
7 colperpex.l . . . . 5  |-  L  =  (LineG `  G )
8 colperpexlem.s . . . . 5  |-  S  =  (pInvG `  G )
9 colperpexlem.a . . . . 5  |-  ( ph  ->  A  e.  P )
10 colperpexlem.m . . . . 5  |-  M  =  ( S `  A
)
111, 2, 3, 7, 8, 4, 9, 10, 5mircl 25556 . . . 4  |-  ( ph  ->  ( M `  Q
)  e.  P )
12 colperpexlem.c . . . . . 6  |-  ( ph  ->  C  e.  P )
131, 2, 3, 7, 8, 4, 9, 10, 12mircl 25556 . . . . 5  |-  ( ph  ->  ( M `  C
)  e.  P )
14 eqid 2622 . . . . . 6  |-  ( S `
 B )  =  ( S `  B
)
151, 2, 3, 7, 8, 4, 6, 14, 12mircl 25556 . . . . 5  |-  ( ph  ->  ( ( S `  B ) `  C
)  e.  P )
161, 2, 3, 7, 8, 4, 9, 10, 15mircl 25556 . . . . 5  |-  ( ph  ->  ( M `  (
( S `  B
) `  C )
)  e.  P )
17 colperpexlem.2 . . . . . . . 8  |-  ( ph  ->  ( K `  ( M `  C )
)  =  ( N `
 C ) )
18 colperpexlem.n . . . . . . . . 9  |-  N  =  ( S `  B
)
191, 2, 3, 7, 8, 4, 6, 18, 12mircl 25556 . . . . . . . 8  |-  ( ph  ->  ( N `  C
)  e.  P )
2017, 19eqeltrd 2701 . . . . . . 7  |-  ( ph  ->  ( K `  ( M `  C )
)  e.  P )
21 colperpexlem.k . . . . . . . 8  |-  K  =  ( S `  Q
)
221, 2, 3, 7, 8, 4, 5, 21, 13mirbtwn 25553 . . . . . . 7  |-  ( ph  ->  Q  e.  ( ( K `  ( M `
 C ) ) I ( M `  C ) ) )
231, 2, 3, 4, 20, 5, 13, 22tgbtwncom 25383 . . . . . 6  |-  ( ph  ->  Q  e.  ( ( M `  C ) I ( K `  ( M `  C ) ) ) )
2418fveq1i 6192 . . . . . . . 8  |-  ( N `
 C )  =  ( ( S `  B ) `  C
)
2517, 24syl6eq 2672 . . . . . . 7  |-  ( ph  ->  ( K `  ( M `  C )
)  =  ( ( S `  B ) `
 C ) )
2625oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( ( M `  C ) I ( K `  ( M `
 C ) ) )  =  ( ( M `  C ) I ( ( S `
 B ) `  C ) ) )
2723, 26eleqtrd 2703 . . . . 5  |-  ( ph  ->  Q  e.  ( ( M `  C ) I ( ( S `
 B ) `  C ) ) )
281, 2, 3, 4, 13, 5, 15, 27tgbtwncom 25383 . . . . . . 7  |-  ( ph  ->  Q  e.  ( ( ( S `  B
) `  C )
I ( M `  C ) ) )
291, 2, 3, 7, 8, 4, 9, 10, 15, 5, 13, 28mirbtwni 25566 . . . . . 6  |-  ( ph  ->  ( M `  Q
)  e.  ( ( M `  ( ( S `  B ) `
 C ) ) I ( M `  ( M `  C ) ) ) )
301, 2, 3, 7, 8, 4, 9, 10, 12mirmir 25557 . . . . . . 7  |-  ( ph  ->  ( M `  ( M `  C )
)  =  C )
3130oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( ( M `  ( ( S `  B ) `  C
) ) I ( M `  ( M `
 C ) ) )  =  ( ( M `  ( ( S `  B ) `
 C ) ) I C ) )
3229, 31eleqtrd 2703 . . . . 5  |-  ( ph  ->  ( M `  Q
)  e.  ( ( M `  ( ( S `  B ) `
 C ) ) I C ) )
331, 2, 3, 4, 13, 15axtgcgrrflx 25361 . . . . . 6  |-  ( ph  ->  ( ( M `  C )  .-  (
( S `  B
) `  C )
)  =  ( ( ( S `  B
) `  C )  .-  ( M `  C
) ) )
341, 2, 3, 7, 8, 4, 9, 10, 15, 13miriso 25565 . . . . . 6  |-  ( ph  ->  ( ( M `  ( ( S `  B ) `  C
) )  .-  ( M `  ( M `  C ) ) )  =  ( ( ( S `  B ) `
 C )  .-  ( M `  C ) ) )
3530oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( ( M `  ( ( S `  B ) `  C
) )  .-  ( M `  ( M `  C ) ) )  =  ( ( M `
 ( ( S `
 B ) `  C ) )  .-  C ) )
3633, 34, 353eqtr2d 2662 . . . . 5  |-  ( ph  ->  ( ( M `  C )  .-  (
( S `  B
) `  C )
)  =  ( ( M `  ( ( S `  B ) `
 C ) ) 
.-  C ) )
3725oveq2d 6666 . . . . . . 7  |-  ( ph  ->  ( Q  .-  ( K `  ( M `  C ) ) )  =  ( Q  .-  ( ( S `  B ) `  C
) ) )
381, 2, 3, 7, 8, 4, 5, 21, 13mircgr 25552 . . . . . . 7  |-  ( ph  ->  ( Q  .-  ( K `  ( M `  C ) ) )  =  ( Q  .-  ( M `  C ) ) )
3937, 38eqtr3d 2658 . . . . . 6  |-  ( ph  ->  ( Q  .-  (
( S `  B
) `  C )
)  =  ( Q 
.-  ( M `  C ) ) )
401, 2, 3, 7, 8, 4, 9, 10, 5, 13miriso 25565 . . . . . 6  |-  ( ph  ->  ( ( M `  Q )  .-  ( M `  ( M `  C ) ) )  =  ( Q  .-  ( M `  C ) ) )
4130oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( ( M `  Q )  .-  ( M `  ( M `  C ) ) )  =  ( ( M `
 Q )  .-  C ) )
4239, 40, 413eqtr2d 2662 . . . . 5  |-  ( ph  ->  ( Q  .-  (
( S `  B
) `  C )
)  =  ( ( M `  Q ) 
.-  C ) )
431, 2, 3, 7, 8, 4, 9, 10, 6mirmir 25557 . . . . . . . . . 10  |-  ( ph  ->  ( M `  ( M `  B )
)  =  B )
44 eqidd 2623 . . . . . . . . . 10  |-  ( ph  ->  ( M `  B
)  =  ( M `
 B ) )
45 eqidd 2623 . . . . . . . . . 10  |-  ( ph  ->  ( M `  C
)  =  ( M `
 C ) )
4643, 44, 45s3eqd 13609 . . . . . . . . 9  |-  ( ph  ->  <" ( M `
 ( M `  B ) ) ( M `  B ) ( M `  C
) ">  =  <" B ( M `
 B ) ( M `  C ) "> )
471, 2, 3, 7, 8, 4, 9, 10, 6mircl 25556 . . . . . . . . . 10  |-  ( ph  ->  ( M `  B
)  e.  P )
48 simpr 477 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  A  =  B )  ->  A  =  B )
4948fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  =  B )  ->  ( M `  A )  =  ( M `  B ) )
504adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  A  =  B )  ->  G  e. TarskiG )
519adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  A  =  B )  ->  A  e.  P )
521, 2, 3, 7, 8, 50, 51, 10mircinv 25563 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  =  B )  ->  ( M `  A )  =  A )
5349, 52eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  =  B )  ->  ( M `  B )  =  A )
54 eqidd 2623 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  =  B )  ->  B  =  B )
55 eqidd 2623 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  =  B )  ->  C  =  C )
5653, 54, 55s3eqd 13609 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =  B )  ->  <" ( M `  B ) B C ">  =  <" A B C "> )
57 colperpexlem.1 . . . . . . . . . . . . 13  |-  ( ph  ->  <" A B C ">  e.  (∟G `  G ) )
5857adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =  B )  ->  <" A B C ">  e.  (∟G `  G ) )
5956, 58eqeltrd 2701 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =  B )  ->  <" ( M `  B ) B C ">  e.  (∟G `  G ) )
604adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =/=  B )  ->  G  e. TarskiG )
619adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =/=  B )  ->  A  e.  P )
626adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =/=  B )  ->  B  e.  P )
6312adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =/=  B )  ->  C  e.  P )
641, 2, 3, 7, 8, 60, 61, 10, 62mircl 25556 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =/=  B )  ->  ( M `  B )  e.  P
)
6557adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =/=  B )  ->  <" A B C ">  e.  (∟G `  G ) )
66 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =/=  B )  ->  A  =/=  B )
671, 2, 3, 7, 8, 60, 61, 10, 62mirbtwn 25553 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  =/=  B )  ->  A  e.  ( ( M `  B ) I B ) )
681, 7, 3, 60, 64, 62, 61, 67btwncolg1 25450 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  =/=  B )  ->  ( A  e.  ( ( M `  B ) L B )  \/  ( M `
 B )  =  B ) )
691, 7, 3, 60, 64, 62, 61, 68colcom 25453 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =/=  B )  ->  ( A  e.  ( B L ( M `  B ) )  \/  B  =  ( M `  B
) ) )
701, 2, 3, 7, 8, 60, 61, 62, 63, 64, 65, 66, 69ragcol 25594 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  B )  ->  <" ( M `  B ) B C ">  e.  (∟G `  G ) )
7159, 70pm2.61dane 2881 . . . . . . . . . 10  |-  ( ph  ->  <" ( M `
 B ) B C ">  e.  (∟G `  G ) )
721, 2, 3, 7, 8, 4, 47, 6, 12, 71, 10, 9mirrag 25596 . . . . . . . . 9  |-  ( ph  ->  <" ( M `
 ( M `  B ) ) ( M `  B ) ( M `  C
) ">  e.  (∟G `  G ) )
7346, 72eqeltrrd 2702 . . . . . . . 8  |-  ( ph  ->  <" B ( M `  B ) ( M `  C
) ">  e.  (∟G `  G ) )
741, 2, 3, 7, 8, 4, 6, 47, 13israg 25592 . . . . . . . 8  |-  ( ph  ->  ( <" B
( M `  B
) ( M `  C ) ">  e.  (∟G `  G )  <->  ( B  .-  ( M `
 C ) )  =  ( B  .-  ( ( S `  ( M `  B ) ) `  ( M `
 C ) ) ) ) )
7573, 74mpbid 222 . . . . . . 7  |-  ( ph  ->  ( B  .-  ( M `  C )
)  =  ( B 
.-  ( ( S `
 ( M `  B ) ) `  ( M `  C ) ) ) )
761, 2, 3, 7, 8, 4, 9, 10, 12, 6mirmir2 25569 . . . . . . . 8  |-  ( ph  ->  ( M `  (
( S `  B
) `  C )
)  =  ( ( S `  ( M `
 B ) ) `
 ( M `  C ) ) )
7776oveq2d 6666 . . . . . . 7  |-  ( ph  ->  ( B  .-  ( M `  ( ( S `  B ) `  C ) ) )  =  ( B  .-  ( ( S `  ( M `  B ) ) `  ( M `
 C ) ) ) )
7875, 77eqtr4d 2659 . . . . . 6  |-  ( ph  ->  ( B  .-  ( M `  C )
)  =  ( B 
.-  ( M `  ( ( S `  B ) `  C
) ) ) )
791, 2, 3, 4, 6, 13, 6, 16, 78tgcgrcomlr 25375 . . . . 5  |-  ( ph  ->  ( ( M `  C )  .-  B
)  =  ( ( M `  ( ( S `  B ) `
 C ) ) 
.-  B ) )
801, 2, 3, 7, 8, 4, 6, 14, 12mircgr 25552 . . . . . 6  |-  ( ph  ->  ( B  .-  (
( S `  B
) `  C )
)  =  ( B 
.-  C ) )
811, 2, 3, 4, 6, 15, 6, 12, 80tgcgrcomlr 25375 . . . . 5  |-  ( ph  ->  ( ( ( S `
 B ) `  C )  .-  B
)  =  ( C 
.-  B ) )
821, 2, 3, 4, 13, 5, 15, 6, 16, 11, 12, 6, 27, 32, 36, 42, 79, 81tgifscgr 25403 . . . 4  |-  ( ph  ->  ( Q  .-  B
)  =  ( ( M `  Q ) 
.-  B ) )
831, 2, 3, 4, 5, 6, 11, 6, 82tgcgrcomlr 25375 . . 3  |-  ( ph  ->  ( B  .-  Q
)  =  ( B 
.-  ( M `  Q ) ) )
8410fveq1i 6192 . . . 4  |-  ( M `
 Q )  =  ( ( S `  A ) `  Q
)
8584oveq2i 6661 . . 3  |-  ( B 
.-  ( M `  Q ) )  =  ( B  .-  (
( S `  A
) `  Q )
)
8683, 85syl6eq 2672 . 2  |-  ( ph  ->  ( B  .-  Q
)  =  ( B 
.-  ( ( S `
 A ) `  Q ) ) )
871, 2, 3, 7, 8, 4, 6, 9, 5israg 25592 . 2  |-  ( ph  ->  ( <" B A Q ">  e.  (∟G `  G )  <->  ( B  .-  Q )  =  ( B  .-  ( ( S `  A ) `
 Q ) ) ) )
8886, 87mpbird 247 1  |-  ( ph  ->  <" B A Q ">  e.  (∟G `  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547  ∟Gcrag 25588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406  df-mir 25548  df-rag 25589
This theorem is referenced by:  colperpexlem3  25624
  Copyright terms: Public domain W3C validator