MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirinv Structured version   Visualization version   Unicode version

Theorem mirinv 25561
Description: The only invariant point of a point inversion Theorem 7.3 of [Schwabhauser] p. 49, Theorem 7.10 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p  |-  P  =  ( Base `  G
)
mirval.d  |-  .-  =  ( dist `  G )
mirval.i  |-  I  =  (Itv `  G )
mirval.l  |-  L  =  (LineG `  G )
mirval.s  |-  S  =  (pInvG `  G )
mirval.g  |-  ( ph  ->  G  e. TarskiG )
mirval.a  |-  ( ph  ->  A  e.  P )
mirfv.m  |-  M  =  ( S `  A
)
mirinv.b  |-  ( ph  ->  B  e.  P )
Assertion
Ref Expression
mirinv  |-  ( ph  ->  ( ( M `  B )  =  B  <-> 
A  =  B ) )

Proof of Theorem mirinv
StepHypRef Expression
1 mirval.p . . . 4  |-  P  =  ( Base `  G
)
2 mirval.d . . . 4  |-  .-  =  ( dist `  G )
3 mirval.i . . . 4  |-  I  =  (Itv `  G )
4 mirval.g . . . . 5  |-  ( ph  ->  G  e. TarskiG )
54adantr 481 . . . 4  |-  ( (
ph  /\  ( M `  B )  =  B )  ->  G  e. TarskiG )
6 mirinv.b . . . . 5  |-  ( ph  ->  B  e.  P )
76adantr 481 . . . 4  |-  ( (
ph  /\  ( M `  B )  =  B )  ->  B  e.  P )
8 mirval.a . . . . 5  |-  ( ph  ->  A  e.  P )
98adantr 481 . . . 4  |-  ( (
ph  /\  ( M `  B )  =  B )  ->  A  e.  P )
10 mirval.l . . . . . 6  |-  L  =  (LineG `  G )
11 mirval.s . . . . . 6  |-  S  =  (pInvG `  G )
12 mirfv.m . . . . . 6  |-  M  =  ( S `  A
)
131, 2, 3, 10, 11, 5, 9, 12, 7mirbtwn 25553 . . . . 5  |-  ( (
ph  /\  ( M `  B )  =  B )  ->  A  e.  ( ( M `  B ) I B ) )
14 simpr 477 . . . . . 6  |-  ( (
ph  /\  ( M `  B )  =  B )  ->  ( M `  B )  =  B )
1514oveq1d 6665 . . . . 5  |-  ( (
ph  /\  ( M `  B )  =  B )  ->  ( ( M `  B )
I B )  =  ( B I B ) )
1613, 15eleqtrd 2703 . . . 4  |-  ( (
ph  /\  ( M `  B )  =  B )  ->  A  e.  ( B I B ) )
171, 2, 3, 5, 7, 9, 16axtgbtwnid 25365 . . 3  |-  ( (
ph  /\  ( M `  B )  =  B )  ->  B  =  A )
1817eqcomd 2628 . 2  |-  ( (
ph  /\  ( M `  B )  =  B )  ->  A  =  B )
194adantr 481 . . . 4  |-  ( (
ph  /\  A  =  B )  ->  G  e. TarskiG )
208adantr 481 . . . 4  |-  ( (
ph  /\  A  =  B )  ->  A  e.  P )
216adantr 481 . . . 4  |-  ( (
ph  /\  A  =  B )  ->  B  e.  P )
22 eqidd 2623 . . . 4  |-  ( (
ph  /\  A  =  B )  ->  ( A  .-  B )  =  ( A  .-  B
) )
23 simpr 477 . . . . 5  |-  ( (
ph  /\  A  =  B )  ->  A  =  B )
241, 2, 3, 19, 21, 21tgbtwntriv1 25386 . . . . 5  |-  ( (
ph  /\  A  =  B )  ->  B  e.  ( B I B ) )
2523, 24eqeltrd 2701 . . . 4  |-  ( (
ph  /\  A  =  B )  ->  A  e.  ( B I B ) )
261, 2, 3, 10, 11, 19, 20, 12, 21, 21, 22, 25ismir 25554 . . 3  |-  ( (
ph  /\  A  =  B )  ->  B  =  ( M `  B ) )
2726eqcomd 2628 . 2  |-  ( (
ph  /\  A  =  B )  ->  ( M `  B )  =  B )
2818, 27impbida 877 1  |-  ( ph  ->  ( ( M `  B )  =  B  <-> 
A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-mir 25548
This theorem is referenced by:  mirne  25562  mircinv  25563  mirln2  25572  miduniq  25580  miduniq2  25582  krippenlem  25585  ragflat2  25598  footex  25613  colperpexlem2  25623  colperpexlem3  25624  opphllem6  25644  lmimid  25686  hypcgrlem2  25692
  Copyright terms: Public domain W3C validator