| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mirinv | Structured version Visualization version Unicode version | ||
| Description: The only invariant point of a point inversion Theorem 7.3 of [Schwabhauser] p. 49, Theorem 7.10 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| mirval.p |
|
| mirval.d |
|
| mirval.i |
|
| mirval.l |
|
| mirval.s |
|
| mirval.g |
|
| mirval.a |
|
| mirfv.m |
|
| mirinv.b |
|
| Ref | Expression |
|---|---|
| mirinv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p |
. . . 4
| |
| 2 | mirval.d |
. . . 4
| |
| 3 | mirval.i |
. . . 4
| |
| 4 | mirval.g |
. . . . 5
| |
| 5 | 4 | adantr 481 |
. . . 4
|
| 6 | mirinv.b |
. . . . 5
| |
| 7 | 6 | adantr 481 |
. . . 4
|
| 8 | mirval.a |
. . . . 5
| |
| 9 | 8 | adantr 481 |
. . . 4
|
| 10 | mirval.l |
. . . . . 6
| |
| 11 | mirval.s |
. . . . . 6
| |
| 12 | mirfv.m |
. . . . . 6
| |
| 13 | 1, 2, 3, 10, 11, 5, 9, 12, 7 | mirbtwn 25553 |
. . . . 5
|
| 14 | simpr 477 |
. . . . . 6
| |
| 15 | 14 | oveq1d 6665 |
. . . . 5
|
| 16 | 13, 15 | eleqtrd 2703 |
. . . 4
|
| 17 | 1, 2, 3, 5, 7, 9, 16 | axtgbtwnid 25365 |
. . 3
|
| 18 | 17 | eqcomd 2628 |
. 2
|
| 19 | 4 | adantr 481 |
. . . 4
|
| 20 | 8 | adantr 481 |
. . . 4
|
| 21 | 6 | adantr 481 |
. . . 4
|
| 22 | eqidd 2623 |
. . . 4
| |
| 23 | simpr 477 |
. . . . 5
| |
| 24 | 1, 2, 3, 19, 21, 21 | tgbtwntriv1 25386 |
. . . . 5
|
| 25 | 23, 24 | eqeltrd 2701 |
. . . 4
|
| 26 | 1, 2, 3, 10, 11, 19, 20, 12, 21, 21, 22, 25 | ismir 25554 |
. . 3
|
| 27 | 26 | eqcomd 2628 |
. 2
|
| 28 | 18, 27 | impbida 877 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-trkgc 25347 df-trkgb 25348 df-trkgcb 25349 df-trkg 25352 df-mir 25548 |
| This theorem is referenced by: mirne 25562 mircinv 25563 mirln2 25572 miduniq 25580 miduniq2 25582 krippenlem 25585 ragflat2 25598 footex 25613 colperpexlem2 25623 colperpexlem3 25624 opphllem6 25644 lmimid 25686 hypcgrlem2 25692 |
| Copyright terms: Public domain | W3C validator |