MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncompconn Structured version   Visualization version   Unicode version

Theorem conncompconn 21235
Description: The connected component containing  A is connected. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
conncomp.2  |-  S  = 
U. { x  e. 
~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) }
Assertion
Ref Expression
conncompconn  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  ( Jt  S )  e. Conn )
Distinct variable groups:    x, A    x, J    x, X
Allowed substitution hint:    S( x)

Proof of Theorem conncompconn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 conncomp.2 . . . 4  |-  S  = 
U. { x  e. 
~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) }
2 uniiun 4573 . . . 4  |-  U. {
x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) }  =  U_ y  e. 
{ x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) } y
31, 2eqtri 2644 . . 3  |-  S  = 
U_ y  e.  {
x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) } y
43oveq2i 6661 . 2  |-  ( Jt  S )  =  ( Jt  U_ y  e.  { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) } y )
5 simpl 473 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  J  e.  (TopOn `  X )
)
6 simpr 477 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  /\  y  e.  { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) } )  ->  y  e.  { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) } )
7 eleq2 2690 . . . . . . . 8  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
8 oveq2 6658 . . . . . . . . 9  |-  ( x  =  y  ->  ( Jt  x )  =  ( Jt  y ) )
98eleq1d 2686 . . . . . . . 8  |-  ( x  =  y  ->  (
( Jt  x )  e. Conn  <->  ( Jt  y
)  e. Conn ) )
107, 9anbi12d 747 . . . . . . 7  |-  ( x  =  y  ->  (
( A  e.  x  /\  ( Jt  x )  e. Conn )  <->  ( A  e.  y  /\  ( Jt  y )  e. Conn
) ) )
1110elrab 3363 . . . . . 6  |-  ( y  e.  { x  e. 
~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) } 
<->  ( y  e.  ~P X  /\  ( A  e.  y  /\  ( Jt  y )  e. Conn ) ) )
126, 11sylib 208 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  /\  y  e.  { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) } )  ->  (
y  e.  ~P X  /\  ( A  e.  y  /\  ( Jt  y )  e. Conn ) ) )
1312simpld 475 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  /\  y  e.  { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) } )  ->  y  e.  ~P X )
1413elpwid 4170 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  /\  y  e.  { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) } )  ->  y  C_  X )
1512simprd 479 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  /\  y  e.  { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) } )  ->  ( A  e.  y  /\  ( Jt  y )  e. Conn
) )
1615simpld 475 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  /\  y  e.  { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) } )  ->  A  e.  y )
1715simprd 479 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  /\  y  e.  { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) } )  ->  ( Jt  y )  e. Conn )
185, 14, 16, 17iunconn 21231 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  ( Jt  U_ y  e.  { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) } y )  e. Conn
)
194, 18syl5eqel 2705 1  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  ( Jt  S )  e. Conn )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   ~Pcpw 4158   U.cuni 4436   U_ciun 4520   ` cfv 5888  (class class class)co 6650   ↾t crest 16081  TopOnctopon 20715  Conncconn 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-conn 21215
This theorem is referenced by:  conncompcld  21237  conncompclo  21238  tgpconncompeqg  21915  tgpconncomp  21916
  Copyright terms: Public domain W3C validator