MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncompcld Structured version   Visualization version   Unicode version

Theorem conncompcld 21237
Description: The connected component containing  A is a closed set. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
conncomp.2  |-  S  = 
U. { x  e. 
~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) }
Assertion
Ref Expression
conncompcld  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  S  e.  ( Clsd `  J
) )
Distinct variable groups:    x, A    x, J    x, X
Allowed substitution hint:    S( x)

Proof of Theorem conncompcld
StepHypRef Expression
1 topontop 20718 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
21adantr 481 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  J  e.  Top )
3 conncomp.2 . . . . . . 7  |-  S  = 
U. { x  e. 
~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) }
4 ssrab2 3687 . . . . . . . 8  |-  { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) }  C_  ~P X
5 sspwuni 4611 . . . . . . . 8  |-  ( { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) } 
C_  ~P X  <->  U. { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) }  C_  X )
64, 5mpbi 220 . . . . . . 7  |-  U. {
x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) } 
C_  X
73, 6eqsstri 3635 . . . . . 6  |-  S  C_  X
8 toponuni 20719 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
98adantr 481 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  X  =  U. J )
107, 9syl5sseq 3653 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  S  C_ 
U. J )
11 eqid 2622 . . . . . 6  |-  U. J  =  U. J
1211clsss3 20863 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( cls `  J ) `  S
)  C_  U. J )
132, 10, 12syl2anc 693 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  (
( cls `  J
) `  S )  C_ 
U. J )
1413, 9sseqtr4d 3642 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  (
( cls `  J
) `  S )  C_  X )
1511sscls 20860 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  S  C_  (
( cls `  J
) `  S )
)
162, 10, 15syl2anc 693 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  S  C_  ( ( cls `  J
) `  S )
)
173conncompid 21234 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  A  e.  S )
1816, 17sseldd 3604 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  A  e.  ( ( cls `  J
) `  S )
)
19 simpl 473 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  J  e.  (TopOn `  X )
)
207a1i 11 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  S  C_  X )
213conncompconn 21235 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  ( Jt  S )  e. Conn )
22 clsconn 21233 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  ( Jt  S )  e. Conn )  -> 
( Jt  ( ( cls `  J ) `  S
) )  e. Conn )
2319, 20, 21, 22syl3anc 1326 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  ( Jt  ( ( cls `  J
) `  S )
)  e. Conn )
243conncompss 21236 . . 3  |-  ( ( ( ( cls `  J
) `  S )  C_  X  /\  A  e.  ( ( cls `  J
) `  S )  /\  ( Jt  ( ( cls `  J ) `  S
) )  e. Conn )  ->  ( ( cls `  J
) `  S )  C_  S )
2514, 18, 23, 24syl3anc 1326 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  (
( cls `  J
) `  S )  C_  S )
2611iscld4 20869 . . 3  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( S  e.  ( Clsd `  J
)  <->  ( ( cls `  J ) `  S
)  C_  S )
)
272, 10, 26syl2anc 693 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  ( S  e.  ( Clsd `  J )  <->  ( ( cls `  J ) `  S )  C_  S
) )
2825, 27mpbird 247 1  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  S  e.  ( Clsd `  J
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Topctop 20698  TopOnctopon 20715   Clsdccld 20820   clsccl 20822  Conncconn 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-conn 21215
This theorem is referenced by:  conncompclo  21238
  Copyright terms: Public domain W3C validator