MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshnz Structured version   Visualization version   Unicode version

Theorem cshnz 13538
Description: A cyclical shift is the empty set if the number of shifts is not an integer. (Contributed by Alexander van der Vekens, 21-May-2018.) (Revised by AV, 17-Nov-2018.)
Assertion
Ref Expression
cshnz  |-  ( -.  N  e.  ZZ  ->  ( W cyclShift  N )  =  (/) )

Proof of Theorem cshnz
Dummy variables  f 
l  n  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-csh 13535 . . 3  |- cyclShift  =  ( w  e.  { f  |  E. l  e. 
NN0  f  Fn  (
0..^ l ) } ,  n  e.  ZZ  |->  if ( w  =  (/) ,  (/) ,  ( ( w substr  <. ( n  mod  ( # `
 w ) ) ,  ( # `  w
) >. ) ++  ( w substr  <. 0 ,  ( n  mod  ( # `  w
) ) >. )
) ) )
2 0ex 4790 . . . 4  |-  (/)  e.  _V
3 ovex 6678 . . . 4  |-  ( ( w substr  <. ( n  mod  ( # `  w ) ) ,  ( # `  w ) >. ) ++  ( w substr  <. 0 ,  ( n  mod  ( # `
 w ) )
>. ) )  e.  _V
42, 3ifex 4156 . . 3  |-  if ( w  =  (/) ,  (/) ,  ( ( w substr  <. (
n  mod  ( # `  w
) ) ,  (
# `  w ) >. ) ++  ( w substr  <. 0 ,  ( n  mod  ( # `  w ) ) >. ) ) )  e.  _V
51, 4dmmpt2 7240 . 2  |-  dom cyclShift  =  ( { f  |  E. l  e.  NN0  f  Fn  ( 0..^ l ) }  X.  ZZ )
6 id 22 . . 3  |-  ( -.  N  e.  ZZ  ->  -.  N  e.  ZZ )
76intnand 962 . 2  |-  ( -.  N  e.  ZZ  ->  -.  ( W  e.  {
f  |  E. l  e.  NN0  f  Fn  (
0..^ l ) }  /\  N  e.  ZZ ) )
8 ndmovg 6817 . 2  |-  ( ( dom cyclShift  =  ( {
f  |  E. l  e.  NN0  f  Fn  (
0..^ l ) }  X.  ZZ )  /\  -.  ( W  e.  {
f  |  E. l  e.  NN0  f  Fn  (
0..^ l ) }  /\  N  e.  ZZ ) )  ->  ( W cyclShift  N )  =  (/) )
95, 7, 8sylancr 695 1  |-  ( -.  N  e.  ZZ  ->  ( W cyclShift  N )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   (/)c0 3915   ifcif 4086   <.cop 4183    X. cxp 5112   dom cdm 5114    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   0cc0 9936   NN0cn0 11292   ZZcz 11377  ..^cfzo 12465    mod cmo 12668   #chash 13117   ++ cconcat 13293   substr csubstr 13295   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-csh 13535
This theorem is referenced by:  0csh0  13539  cshwcl  13544
  Copyright terms: Public domain W3C validator