| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmovg | Structured version Visualization version Unicode version | ||
| Description: The value of an operation outside its domain. (Contributed by NM, 28-Mar-2008.) |
| Ref | Expression |
|---|---|
| ndmovg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 6653 |
. 2
| |
| 2 | eleq2 2690 |
. . . . . 6
| |
| 3 | opelxp 5146 |
. . . . . 6
| |
| 4 | 2, 3 | syl6bb 276 |
. . . . 5
|
| 5 | 4 | notbid 308 |
. . . 4
|
| 6 | ndmfv 6218 |
. . . 4
| |
| 7 | 5, 6 | syl6bir 244 |
. . 3
|
| 8 | 7 | imp 445 |
. 2
|
| 9 | 1, 8 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-dm 5124 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: ndmov 6818 curry1val 7270 curry2val 7274 1div0 10686 repsundef 13518 cshnz 13538 mamufacex 20195 mavmulsolcl 20357 mavmul0g 20359 iscau2 23075 1div0apr 27324 |
| Copyright terms: Public domain | W3C validator |