MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf12 Structured version   Visualization version   Unicode version

Theorem curf12 16867
Description: The partially evaluated curry functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
curfval.g  |-  G  =  ( <. C ,  D >. curryF  F
)
curfval.a  |-  A  =  ( Base `  C
)
curfval.c  |-  ( ph  ->  C  e.  Cat )
curfval.d  |-  ( ph  ->  D  e.  Cat )
curfval.f  |-  ( ph  ->  F  e.  ( ( C  X.c  D )  Func  E
) )
curfval.b  |-  B  =  ( Base `  D
)
curf1.x  |-  ( ph  ->  X  e.  A )
curf1.k  |-  K  =  ( ( 1st `  G
) `  X )
curf11.y  |-  ( ph  ->  Y  e.  B )
curf12.j  |-  J  =  ( Hom  `  D
)
curf12.1  |-  .1.  =  ( Id `  C )
curf12.y  |-  ( ph  ->  Z  e.  B )
curf12.g  |-  ( ph  ->  H  e.  ( Y J Z ) )
Assertion
Ref Expression
curf12  |-  ( ph  ->  ( ( Y ( 2nd `  K ) Z ) `  H
)  =  ( (  .1.  `  X )
( <. X ,  Y >. ( 2nd `  F
) <. X ,  Z >. ) H ) )

Proof of Theorem curf12
Dummy variables  g 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfval.g . . . 4  |-  G  =  ( <. C ,  D >. curryF  F
)
2 curfval.a . . . 4  |-  A  =  ( Base `  C
)
3 curfval.c . . . 4  |-  ( ph  ->  C  e.  Cat )
4 curfval.d . . . 4  |-  ( ph  ->  D  e.  Cat )
5 curfval.f . . . 4  |-  ( ph  ->  F  e.  ( ( C  X.c  D )  Func  E
) )
6 curfval.b . . . 4  |-  B  =  ( Base `  D
)
7 curf1.x . . . 4  |-  ( ph  ->  X  e.  A )
8 curf1.k . . . 4  |-  K  =  ( ( 1st `  G
) `  X )
9 curf12.j . . . 4  |-  J  =  ( Hom  `  D
)
10 curf12.1 . . . 4  |-  .1.  =  ( Id `  C )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10curf1 16865 . . 3  |-  ( ph  ->  K  =  <. (
y  e.  B  |->  ( X ( 1st `  F
) y ) ) ,  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y J z )  |->  ( (  .1.  `  X ) ( <. X ,  y >. ( 2nd `  F )
<. X ,  z >.
) g ) ) ) >. )
12 fvex 6201 . . . . . 6  |-  ( Base `  D )  e.  _V
136, 12eqeltri 2697 . . . . 5  |-  B  e. 
_V
1413mptex 6486 . . . 4  |-  ( y  e.  B  |->  ( X ( 1st `  F
) y ) )  e.  _V
1513, 13mpt2ex 7247 . . . 4  |-  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y J z )  |->  ( (  .1.  `  X )
( <. X ,  y
>. ( 2nd `  F
) <. X ,  z
>. ) g ) ) )  e.  _V
1614, 15op2ndd 7179 . . 3  |-  ( K  =  <. ( y  e.  B  |->  ( X ( 1st `  F ) y ) ) ,  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y J z ) 
|->  ( (  .1.  `  X ) ( <. X ,  y >. ( 2nd `  F )
<. X ,  z >.
) g ) ) ) >.  ->  ( 2nd `  K )  =  ( y  e.  B , 
z  e.  B  |->  ( g  e.  ( y J z )  |->  ( (  .1.  `  X
) ( <. X , 
y >. ( 2nd `  F
) <. X ,  z
>. ) g ) ) ) )
1711, 16syl 17 . 2  |-  ( ph  ->  ( 2nd `  K
)  =  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y J z )  |->  ( (  .1.  `  X )
( <. X ,  y
>. ( 2nd `  F
) <. X ,  z
>. ) g ) ) ) )
18 curf11.y . . 3  |-  ( ph  ->  Y  e.  B )
19 curf12.y . . . 4  |-  ( ph  ->  Z  e.  B )
2019adantr 481 . . 3  |-  ( (
ph  /\  y  =  Y )  ->  Z  e.  B )
21 ovex 6678 . . . . 5  |-  ( y J z )  e. 
_V
2221mptex 6486 . . . 4  |-  ( g  e.  ( y J z )  |->  ( (  .1.  `  X )
( <. X ,  y
>. ( 2nd `  F
) <. X ,  z
>. ) g ) )  e.  _V
2322a1i 11 . . 3  |-  ( (
ph  /\  ( y  =  Y  /\  z  =  Z ) )  -> 
( g  e.  ( y J z ) 
|->  ( (  .1.  `  X ) ( <. X ,  y >. ( 2nd `  F )
<. X ,  z >.
) g ) )  e.  _V )
24 curf12.g . . . . . 6  |-  ( ph  ->  H  e.  ( Y J Z ) )
2524adantr 481 . . . . 5  |-  ( (
ph  /\  ( y  =  Y  /\  z  =  Z ) )  ->  H  e.  ( Y J Z ) )
26 simprl 794 . . . . . 6  |-  ( (
ph  /\  ( y  =  Y  /\  z  =  Z ) )  -> 
y  =  Y )
27 simprr 796 . . . . . 6  |-  ( (
ph  /\  ( y  =  Y  /\  z  =  Z ) )  -> 
z  =  Z )
2826, 27oveq12d 6668 . . . . 5  |-  ( (
ph  /\  ( y  =  Y  /\  z  =  Z ) )  -> 
( y J z )  =  ( Y J Z ) )
2925, 28eleqtrrd 2704 . . . 4  |-  ( (
ph  /\  ( y  =  Y  /\  z  =  Z ) )  ->  H  e.  ( y J z ) )
30 ovexd 6680 . . . 4  |-  ( ( ( ph  /\  (
y  =  Y  /\  z  =  Z )
)  /\  g  =  H )  ->  (
(  .1.  `  X
) ( <. X , 
y >. ( 2nd `  F
) <. X ,  z
>. ) g )  e. 
_V )
31 simplrl 800 . . . . . . 7  |-  ( ( ( ph  /\  (
y  =  Y  /\  z  =  Z )
)  /\  g  =  H )  ->  y  =  Y )
3231opeq2d 4409 . . . . . 6  |-  ( ( ( ph  /\  (
y  =  Y  /\  z  =  Z )
)  /\  g  =  H )  ->  <. X , 
y >.  =  <. X ,  Y >. )
33 simplrr 801 . . . . . . 7  |-  ( ( ( ph  /\  (
y  =  Y  /\  z  =  Z )
)  /\  g  =  H )  ->  z  =  Z )
3433opeq2d 4409 . . . . . 6  |-  ( ( ( ph  /\  (
y  =  Y  /\  z  =  Z )
)  /\  g  =  H )  ->  <. X , 
z >.  =  <. X ,  Z >. )
3532, 34oveq12d 6668 . . . . 5  |-  ( ( ( ph  /\  (
y  =  Y  /\  z  =  Z )
)  /\  g  =  H )  ->  ( <. X ,  y >.
( 2nd `  F
) <. X ,  z
>. )  =  ( <. X ,  Y >. ( 2nd `  F )
<. X ,  Z >. ) )
36 eqidd 2623 . . . . 5  |-  ( ( ( ph  /\  (
y  =  Y  /\  z  =  Z )
)  /\  g  =  H )  ->  (  .1.  `  X )  =  (  .1.  `  X
) )
37 simpr 477 . . . . 5  |-  ( ( ( ph  /\  (
y  =  Y  /\  z  =  Z )
)  /\  g  =  H )  ->  g  =  H )
3835, 36, 37oveq123d 6671 . . . 4  |-  ( ( ( ph  /\  (
y  =  Y  /\  z  =  Z )
)  /\  g  =  H )  ->  (
(  .1.  `  X
) ( <. X , 
y >. ( 2nd `  F
) <. X ,  z
>. ) g )  =  ( (  .1.  `  X ) ( <. X ,  Y >. ( 2nd `  F )
<. X ,  Z >. ) H ) )
3929, 30, 38fvmptdv2 6298 . . 3  |-  ( (
ph  /\  ( y  =  Y  /\  z  =  Z ) )  -> 
( ( Y ( 2nd `  K ) Z )  =  ( g  e.  ( y J z )  |->  ( (  .1.  `  X
) ( <. X , 
y >. ( 2nd `  F
) <. X ,  z
>. ) g ) )  ->  ( ( Y ( 2nd `  K
) Z ) `  H )  =  ( (  .1.  `  X
) ( <. X ,  Y >. ( 2nd `  F
) <. X ,  Z >. ) H ) ) )
4018, 20, 23, 39ovmpt2dv 6793 . 2  |-  ( ph  ->  ( ( 2nd `  K
)  =  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y J z )  |->  ( (  .1.  `  X )
( <. X ,  y
>. ( 2nd `  F
) <. X ,  z
>. ) g ) ) )  ->  ( ( Y ( 2nd `  K
) Z ) `  H )  =  ( (  .1.  `  X
) ( <. X ,  Y >. ( 2nd `  F
) <. X ,  Z >. ) H ) ) )
4117, 40mpd 15 1  |-  ( ph  ->  ( ( Y ( 2nd `  K ) Z ) `  H
)  =  ( (  .1.  `  X )
( <. X ,  Y >. ( 2nd `  F
) <. X ,  Z >. ) H ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Hom chom 15952   Catccat 16325   Idccid 16326    Func cfunc 16514    X.c cxpc 16808   curryF ccurf 16850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-curf 16854
This theorem is referenced by:  curf1cl  16868  curf2cl  16871  uncfcurf  16879  diag12  16884  yon12  16905
  Copyright terms: Public domain W3C validator