MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yon12 Structured version   Visualization version   Unicode version

Theorem yon12 16905
Description: Value of the Yoneda embedding at a morphism. The partially evaluated Yoneda embedding is also the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.)
Hypotheses
Ref Expression
yon11.y  |-  Y  =  (Yon `  C )
yon11.b  |-  B  =  ( Base `  C
)
yon11.c  |-  ( ph  ->  C  e.  Cat )
yon11.p  |-  ( ph  ->  X  e.  B )
yon11.h  |-  H  =  ( Hom  `  C
)
yon11.z  |-  ( ph  ->  Z  e.  B )
yon12.x  |-  .x.  =  (comp `  C )
yon12.w  |-  ( ph  ->  W  e.  B )
yon12.f  |-  ( ph  ->  F  e.  ( W H Z ) )
yon12.g  |-  ( ph  ->  G  e.  ( Z H X ) )
Assertion
Ref Expression
yon12  |-  ( ph  ->  ( ( ( Z ( 2nd `  (
( 1st `  Y
) `  X )
) W ) `  F ) `  G
)  =  ( G ( <. W ,  Z >.  .x.  X ) F ) )

Proof of Theorem yon12
StepHypRef Expression
1 yon11.y . . . . . . . . . 10  |-  Y  =  (Yon `  C )
2 yon11.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  Cat )
3 eqid 2622 . . . . . . . . . 10  |-  (oppCat `  C )  =  (oppCat `  C )
4 eqid 2622 . . . . . . . . . 10  |-  (HomF `  (oppCat `  C ) )  =  (HomF
`  (oppCat `  C )
)
51, 2, 3, 4yonval 16901 . . . . . . . . 9  |-  ( ph  ->  Y  =  ( <. C ,  (oppCat `  C
) >. curryF  (HomF `  (oppCat `  C )
) ) )
65fveq2d 6195 . . . . . . . 8  |-  ( ph  ->  ( 1st `  Y
)  =  ( 1st `  ( <. C ,  (oppCat `  C ) >. curryF  (HomF
`  (oppCat `  C )
) ) ) )
76fveq1d 6193 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  Y
) `  X )  =  ( ( 1st `  ( <. C ,  (oppCat `  C ) >. curryF  (HomF
`  (oppCat `  C )
) ) ) `  X ) )
87fveq2d 6195 . . . . . 6  |-  ( ph  ->  ( 2nd `  (
( 1st `  Y
) `  X )
)  =  ( 2nd `  ( ( 1st `  ( <. C ,  (oppCat `  C ) >. curryF  (HomF
`  (oppCat `  C )
) ) ) `  X ) ) )
98oveqd 6667 . . . . 5  |-  ( ph  ->  ( Z ( 2nd `  ( ( 1st `  Y
) `  X )
) W )  =  ( Z ( 2nd `  ( ( 1st `  ( <. C ,  (oppCat `  C ) >. curryF  (HomF
`  (oppCat `  C )
) ) ) `  X ) ) W ) )
109fveq1d 6193 . . . 4  |-  ( ph  ->  ( ( Z ( 2nd `  ( ( 1st `  Y ) `
 X ) ) W ) `  F
)  =  ( ( Z ( 2nd `  (
( 1st `  ( <. C ,  (oppCat `  C ) >. curryF  (HomF
`  (oppCat `  C )
) ) ) `  X ) ) W ) `  F ) )
11 eqid 2622 . . . . 5  |-  ( <. C ,  (oppCat `  C
) >. curryF  (HomF `  (oppCat `  C )
) )  =  (
<. C ,  (oppCat `  C ) >. curryF  (HomF
`  (oppCat `  C )
) )
12 yon11.b . . . . 5  |-  B  =  ( Base `  C
)
133oppccat 16382 . . . . . 6  |-  ( C  e.  Cat  ->  (oppCat `  C )  e.  Cat )
142, 13syl 17 . . . . 5  |-  ( ph  ->  (oppCat `  C )  e.  Cat )
15 eqid 2622 . . . . . 6  |-  ( SetCat ` 
ran  ( Hom f  `  C ) )  =  ( SetCat ` 
ran  ( Hom f  `  C ) )
16 fvex 6201 . . . . . . . 8  |-  ( Hom f  `  C )  e.  _V
1716rnex 7100 . . . . . . 7  |-  ran  ( Hom f  `  C )  e.  _V
1817a1i 11 . . . . . 6  |-  ( ph  ->  ran  ( Hom f  `  C )  e.  _V )
19 ssid 3624 . . . . . . 7  |-  ran  ( Hom f  `  C )  C_  ran  ( Hom f  `  C )
2019a1i 11 . . . . . 6  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  ran  ( Hom f  `  C
) )
213, 4, 15, 2, 18, 20oppchofcl 16900 . . . . 5  |-  ( ph  ->  (HomF
`  (oppCat `  C )
)  e.  ( ( C  X.c  (oppCat `  C )
)  Func  ( SetCat ` 
ran  ( Hom f  `  C ) ) ) )
223, 12oppcbas 16378 . . . . 5  |-  B  =  ( Base `  (oppCat `  C ) )
23 yon11.p . . . . 5  |-  ( ph  ->  X  e.  B )
24 eqid 2622 . . . . 5  |-  ( ( 1st `  ( <. C ,  (oppCat `  C
) >. curryF  (HomF `  (oppCat `  C )
) ) ) `  X )  =  ( ( 1st `  ( <. C ,  (oppCat `  C ) >. curryF  (HomF
`  (oppCat `  C )
) ) ) `  X )
25 yon11.z . . . . 5  |-  ( ph  ->  Z  e.  B )
26 eqid 2622 . . . . 5  |-  ( Hom  `  (oppCat `  C )
)  =  ( Hom  `  (oppCat `  C )
)
27 eqid 2622 . . . . 5  |-  ( Id
`  C )  =  ( Id `  C
)
28 yon12.w . . . . 5  |-  ( ph  ->  W  e.  B )
29 yon12.f . . . . . 6  |-  ( ph  ->  F  e.  ( W H Z ) )
30 yon11.h . . . . . . 7  |-  H  =  ( Hom  `  C
)
3130, 3oppchom 16375 . . . . . 6  |-  ( Z ( Hom  `  (oppCat `  C ) ) W )  =  ( W H Z )
3229, 31syl6eleqr 2712 . . . . 5  |-  ( ph  ->  F  e.  ( Z ( Hom  `  (oppCat `  C ) ) W ) )
3311, 12, 2, 14, 21, 22, 23, 24, 25, 26, 27, 28, 32curf12 16867 . . . 4  |-  ( ph  ->  ( ( Z ( 2nd `  ( ( 1st `  ( <. C ,  (oppCat `  C
) >. curryF  (HomF `  (oppCat `  C )
) ) ) `  X ) ) W ) `  F )  =  ( ( ( Id `  C ) `
 X ) (
<. X ,  Z >. ( 2nd `  (HomF `  (oppCat `  C ) ) )
<. X ,  W >. ) F ) )
3410, 33eqtrd 2656 . . 3  |-  ( ph  ->  ( ( Z ( 2nd `  ( ( 1st `  Y ) `
 X ) ) W ) `  F
)  =  ( ( ( Id `  C
) `  X )
( <. X ,  Z >. ( 2nd `  (HomF `  (oppCat `  C ) ) )
<. X ,  W >. ) F ) )
3534fveq1d 6193 . 2  |-  ( ph  ->  ( ( ( Z ( 2nd `  (
( 1st `  Y
) `  X )
) W ) `  F ) `  G
)  =  ( ( ( ( Id `  C ) `  X
) ( <. X ,  Z >. ( 2nd `  (HomF `  (oppCat `  C ) ) )
<. X ,  W >. ) F ) `  G
) )
36 eqid 2622 . . 3  |-  (comp `  (oppCat `  C ) )  =  (comp `  (oppCat `  C ) )
3712, 30, 27, 2, 23catidcl 16343 . . . 4  |-  ( ph  ->  ( ( Id `  C ) `  X
)  e.  ( X H X ) )
3830, 3oppchom 16375 . . . 4  |-  ( X ( Hom  `  (oppCat `  C ) ) X )  =  ( X H X )
3937, 38syl6eleqr 2712 . . 3  |-  ( ph  ->  ( ( Id `  C ) `  X
)  e.  ( X ( Hom  `  (oppCat `  C ) ) X ) )
40 yon12.g . . . 4  |-  ( ph  ->  G  e.  ( Z H X ) )
4130, 3oppchom 16375 . . . 4  |-  ( X ( Hom  `  (oppCat `  C ) ) Z )  =  ( Z H X )
4240, 41syl6eleqr 2712 . . 3  |-  ( ph  ->  G  e.  ( X ( Hom  `  (oppCat `  C ) ) Z ) )
434, 14, 22, 26, 23, 25, 23, 28, 36, 39, 32, 42hof2 16897 . 2  |-  ( ph  ->  ( ( ( ( Id `  C ) `
 X ) (
<. X ,  Z >. ( 2nd `  (HomF `  (oppCat `  C ) ) )
<. X ,  W >. ) F ) `  G
)  =  ( ( F ( <. X ,  Z >. (comp `  (oppCat `  C ) ) W ) G ) (
<. X ,  X >. (comp `  (oppCat `  C )
) W ) ( ( Id `  C
) `  X )
) )
44 yon12.x . . . . 5  |-  .x.  =  (comp `  C )
4512, 44, 3, 23, 25, 28oppcco 16377 . . . 4  |-  ( ph  ->  ( F ( <. X ,  Z >. (comp `  (oppCat `  C )
) W ) G )  =  ( G ( <. W ,  Z >.  .x.  X ) F ) )
4645oveq1d 6665 . . 3  |-  ( ph  ->  ( ( F (
<. X ,  Z >. (comp `  (oppCat `  C )
) W ) G ) ( <. X ,  X >. (comp `  (oppCat `  C ) ) W ) ( ( Id
`  C ) `  X ) )  =  ( ( G (
<. W ,  Z >.  .x. 
X ) F ) ( <. X ,  X >. (comp `  (oppCat `  C
) ) W ) ( ( Id `  C ) `  X
) ) )
4712, 44, 3, 23, 23, 28oppcco 16377 . . 3  |-  ( ph  ->  ( ( G (
<. W ,  Z >.  .x. 
X ) F ) ( <. X ,  X >. (comp `  (oppCat `  C
) ) W ) ( ( Id `  C ) `  X
) )  =  ( ( ( Id `  C ) `  X
) ( <. W ,  X >.  .x.  X )
( G ( <. W ,  Z >.  .x. 
X ) F ) ) )
4812, 30, 44, 2, 28, 25, 23, 29, 40catcocl 16346 . . . 4  |-  ( ph  ->  ( G ( <. W ,  Z >.  .x. 
X ) F )  e.  ( W H X ) )
4912, 30, 27, 2, 28, 44, 23, 48catlid 16344 . . 3  |-  ( ph  ->  ( ( ( Id
`  C ) `  X ) ( <. W ,  X >.  .x. 
X ) ( G ( <. W ,  Z >.  .x.  X ) F ) )  =  ( G ( <. W ,  Z >.  .x.  X ) F ) )
5046, 47, 493eqtrd 2660 . 2  |-  ( ph  ->  ( ( F (
<. X ,  Z >. (comp `  (oppCat `  C )
) W ) G ) ( <. X ,  X >. (comp `  (oppCat `  C ) ) W ) ( ( Id
`  C ) `  X ) )  =  ( G ( <. W ,  Z >.  .x. 
X ) F ) )
5135, 43, 503eqtrd 2660 1  |-  ( ph  ->  ( ( ( Z ( 2nd `  (
( 1st `  Y
) `  X )
) W ) `  F ) `  G
)  =  ( G ( <. W ,  Z >.  .x.  X ) F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   <.cop 4183   ran crn 5115   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326   Hom f chomf 16327  oppCatcoppc 16371   SetCatcsetc 16725   curryF ccurf 16850  HomFchof 16888  Yoncyon 16889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-homf 16331  df-comf 16332  df-oppc 16372  df-func 16518  df-setc 16726  df-xpc 16812  df-curf 16854  df-hof 16890  df-yon 16891
This theorem is referenced by:  yonedalem4c  16917  yonedalem3b  16919  yonedainv  16921  yonffthlem  16922
  Copyright terms: Public domain W3C validator