MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf1cl Structured version   Visualization version   Unicode version

Theorem curf1cl 16868
Description: The partially evaluated curry functor is a functor. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curfval.g  |-  G  =  ( <. C ,  D >. curryF  F
)
curfval.a  |-  A  =  ( Base `  C
)
curfval.c  |-  ( ph  ->  C  e.  Cat )
curfval.d  |-  ( ph  ->  D  e.  Cat )
curfval.f  |-  ( ph  ->  F  e.  ( ( C  X.c  D )  Func  E
) )
curfval.b  |-  B  =  ( Base `  D
)
curf1.x  |-  ( ph  ->  X  e.  A )
curf1.k  |-  K  =  ( ( 1st `  G
) `  X )
Assertion
Ref Expression
curf1cl  |-  ( ph  ->  K  e.  ( D 
Func  E ) )

Proof of Theorem curf1cl
Dummy variables  g 
y  z  h  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfval.g . . . 4  |-  G  =  ( <. C ,  D >. curryF  F
)
2 curfval.a . . . 4  |-  A  =  ( Base `  C
)
3 curfval.c . . . 4  |-  ( ph  ->  C  e.  Cat )
4 curfval.d . . . 4  |-  ( ph  ->  D  e.  Cat )
5 curfval.f . . . 4  |-  ( ph  ->  F  e.  ( ( C  X.c  D )  Func  E
) )
6 curfval.b . . . 4  |-  B  =  ( Base `  D
)
7 curf1.x . . . 4  |-  ( ph  ->  X  e.  A )
8 curf1.k . . . 4  |-  K  =  ( ( 1st `  G
) `  X )
9 eqid 2622 . . . 4  |-  ( Hom  `  D )  =  ( Hom  `  D )
10 eqid 2622 . . . 4  |-  ( Id
`  C )  =  ( Id `  C
)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10curf1 16865 . . 3  |-  ( ph  ->  K  =  <. (
y  e.  B  |->  ( X ( 1st `  F
) y ) ) ,  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y ( Hom  `  D ) z ) 
|->  ( ( ( Id
`  C ) `  X ) ( <. X ,  y >. ( 2nd `  F )
<. X ,  z >.
) g ) ) ) >. )
12 fvex 6201 . . . . . . . 8  |-  ( Base `  D )  e.  _V
136, 12eqeltri 2697 . . . . . . 7  |-  B  e. 
_V
1413mptex 6486 . . . . . 6  |-  ( y  e.  B  |->  ( X ( 1st `  F
) y ) )  e.  _V
1513, 13mpt2ex 7247 . . . . . 6  |-  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y ( Hom  `  D )
z )  |->  ( ( ( Id `  C
) `  X )
( <. X ,  y
>. ( 2nd `  F
) <. X ,  z
>. ) g ) ) )  e.  _V
1614, 15op1std 7178 . . . . 5  |-  ( K  =  <. ( y  e.  B  |->  ( X ( 1st `  F ) y ) ) ,  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y ( Hom  `  D
) z )  |->  ( ( ( Id `  C ) `  X
) ( <. X , 
y >. ( 2nd `  F
) <. X ,  z
>. ) g ) ) ) >.  ->  ( 1st `  K )  =  ( y  e.  B  |->  ( X ( 1st `  F
) y ) ) )
1711, 16syl 17 . . . 4  |-  ( ph  ->  ( 1st `  K
)  =  ( y  e.  B  |->  ( X ( 1st `  F
) y ) ) )
1814, 15op2ndd 7179 . . . . 5  |-  ( K  =  <. ( y  e.  B  |->  ( X ( 1st `  F ) y ) ) ,  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y ( Hom  `  D
) z )  |->  ( ( ( Id `  C ) `  X
) ( <. X , 
y >. ( 2nd `  F
) <. X ,  z
>. ) g ) ) ) >.  ->  ( 2nd `  K )  =  ( y  e.  B , 
z  e.  B  |->  ( g  e.  ( y ( Hom  `  D
) z )  |->  ( ( ( Id `  C ) `  X
) ( <. X , 
y >. ( 2nd `  F
) <. X ,  z
>. ) g ) ) ) )
1911, 18syl 17 . . . 4  |-  ( ph  ->  ( 2nd `  K
)  =  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y ( Hom  `  D )
z )  |->  ( ( ( Id `  C
) `  X )
( <. X ,  y
>. ( 2nd `  F
) <. X ,  z
>. ) g ) ) ) )
2017, 19opeq12d 4410 . . 3  |-  ( ph  -> 
<. ( 1st `  K
) ,  ( 2nd `  K ) >.  =  <. ( y  e.  B  |->  ( X ( 1st `  F
) y ) ) ,  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y ( Hom  `  D ) z ) 
|->  ( ( ( Id
`  C ) `  X ) ( <. X ,  y >. ( 2nd `  F )
<. X ,  z >.
) g ) ) ) >. )
2111, 20eqtr4d 2659 . 2  |-  ( ph  ->  K  =  <. ( 1st `  K ) ,  ( 2nd `  K
) >. )
22 eqid 2622 . . . 4  |-  ( Base `  E )  =  (
Base `  E )
23 eqid 2622 . . . 4  |-  ( Hom  `  E )  =  ( Hom  `  E )
24 eqid 2622 . . . 4  |-  ( Id
`  D )  =  ( Id `  D
)
25 eqid 2622 . . . 4  |-  ( Id
`  E )  =  ( Id `  E
)
26 eqid 2622 . . . 4  |-  (comp `  D )  =  (comp `  D )
27 eqid 2622 . . . 4  |-  (comp `  E )  =  (comp `  E )
28 funcrcl 16523 . . . . . 6  |-  ( F  e.  ( ( C  X.c  D )  Func  E
)  ->  ( ( C  X.c  D )  e.  Cat  /\  E  e.  Cat )
)
295, 28syl 17 . . . . 5  |-  ( ph  ->  ( ( C  X.c  D
)  e.  Cat  /\  E  e.  Cat )
)
3029simprd 479 . . . 4  |-  ( ph  ->  E  e.  Cat )
31 eqid 2622 . . . . . . . . . 10  |-  ( C  X.c  D )  =  ( C  X.c  D )
3231, 2, 6xpcbas 16818 . . . . . . . . 9  |-  ( A  X.  B )  =  ( Base `  ( C  X.c  D ) )
33 relfunc 16522 . . . . . . . . . 10  |-  Rel  (
( C  X.c  D ) 
Func  E )
34 1st2ndbr 7217 . . . . . . . . . 10  |-  ( ( Rel  ( ( C  X.c  D )  Func  E
)  /\  F  e.  ( ( C  X.c  D
)  Func  E )
)  ->  ( 1st `  F ) ( ( C  X.c  D )  Func  E
) ( 2nd `  F
) )
3533, 5, 34sylancr 695 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  F
) ( ( C  X.c  D )  Func  E
) ( 2nd `  F
) )
3632, 22, 35funcf1 16526 . . . . . . . 8  |-  ( ph  ->  ( 1st `  F
) : ( A  X.  B ) --> (
Base `  E )
)
3736adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  B )  ->  ( 1st `  F ) : ( A  X.  B
) --> ( Base `  E
) )
387adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  B )  ->  X  e.  A )
39 simpr 477 . . . . . . 7  |-  ( (
ph  /\  y  e.  B )  ->  y  e.  B )
4037, 38, 39fovrnd 6806 . . . . . 6  |-  ( (
ph  /\  y  e.  B )  ->  ( X ( 1st `  F
) y )  e.  ( Base `  E
) )
41 eqid 2622 . . . . . 6  |-  ( y  e.  B  |->  ( X ( 1st `  F
) y ) )  =  ( y  e.  B  |->  ( X ( 1st `  F ) y ) )
4240, 41fmptd 6385 . . . . 5  |-  ( ph  ->  ( y  e.  B  |->  ( X ( 1st `  F ) y ) ) : B --> ( Base `  E ) )
4317feq1d 6030 . . . . 5  |-  ( ph  ->  ( ( 1st `  K
) : B --> ( Base `  E )  <->  ( y  e.  B  |->  ( X ( 1st `  F
) y ) ) : B --> ( Base `  E ) ) )
4442, 43mpbird 247 . . . 4  |-  ( ph  ->  ( 1st `  K
) : B --> ( Base `  E ) )
45 eqid 2622 . . . . . 6  |-  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y ( Hom  `  D )
z )  |->  ( ( ( Id `  C
) `  X )
( <. X ,  y
>. ( 2nd `  F
) <. X ,  z
>. ) g ) ) )  =  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y ( Hom  `  D )
z )  |->  ( ( ( Id `  C
) `  X )
( <. X ,  y
>. ( 2nd `  F
) <. X ,  z
>. ) g ) ) )
46 ovex 6678 . . . . . . 7  |-  ( y ( Hom  `  D
) z )  e. 
_V
4746mptex 6486 . . . . . 6  |-  ( g  e.  ( y ( Hom  `  D )
z )  |->  ( ( ( Id `  C
) `  X )
( <. X ,  y
>. ( 2nd `  F
) <. X ,  z
>. ) g ) )  e.  _V
4845, 47fnmpt2i 7239 . . . . 5  |-  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y ( Hom  `  D )
z )  |->  ( ( ( Id `  C
) `  X )
( <. X ,  y
>. ( 2nd `  F
) <. X ,  z
>. ) g ) ) )  Fn  ( B  X.  B )
4919fneq1d 5981 . . . . 5  |-  ( ph  ->  ( ( 2nd `  K
)  Fn  ( B  X.  B )  <->  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y ( Hom  `  D ) z ) 
|->  ( ( ( Id
`  C ) `  X ) ( <. X ,  y >. ( 2nd `  F )
<. X ,  z >.
) g ) ) )  Fn  ( B  X.  B ) ) )
5048, 49mpbiri 248 . . . 4  |-  ( ph  ->  ( 2nd `  K
)  Fn  ( B  X.  B ) )
51 eqid 2622 . . . . . . . . 9  |-  ( Hom  `  ( C  X.c  D ) )  =  ( Hom  `  ( C  X.c  D ) )
5235ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  ( 1st `  F ) ( ( C  X.c  D )  Func  E
) ( 2nd `  F
) )
537ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  X  e.  A )
54 simplrl 800 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  y  e.  B )
55 opelxpi 5148 . . . . . . . . . 10  |-  ( ( X  e.  A  /\  y  e.  B )  -> 
<. X ,  y >.  e.  ( A  X.  B
) )
5653, 54, 55syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  <. X , 
y >.  e.  ( A  X.  B ) )
57 simplrr 801 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  z  e.  B )
58 opelxpi 5148 . . . . . . . . . 10  |-  ( ( X  e.  A  /\  z  e.  B )  -> 
<. X ,  z >.  e.  ( A  X.  B
) )
5953, 57, 58syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  <. X , 
z >.  e.  ( A  X.  B ) )
6032, 51, 23, 52, 56, 59funcf2 16528 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  ( <. X ,  y >. ( 2nd `  F ) <. X ,  z >. ) : ( <. X , 
y >. ( Hom  `  ( C  X.c  D ) ) <. X ,  z >. ) --> ( ( ( 1st `  F ) `  <. X ,  y >. )
( Hom  `  E ) ( ( 1st `  F
) `  <. X , 
z >. ) ) )
61 eqid 2622 . . . . . . . . . 10  |-  ( Hom  `  C )  =  ( Hom  `  C )
6231, 32, 61, 9, 51, 56, 59xpchom 16820 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  ( <. X ,  y >. ( Hom  `  ( C  X.c  D
) ) <. X , 
z >. )  =  ( ( ( 1st `  <. X ,  y >. )
( Hom  `  C ) ( 1st `  <. X ,  z >. )
)  X.  ( ( 2nd `  <. X , 
y >. ) ( Hom  `  D ) ( 2nd `  <. X ,  z
>. ) ) ) )
633ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  C  e.  Cat )
644ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  D  e.  Cat )
655ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  F  e.  ( ( C  X.c  D
)  Func  E )
)
661, 2, 63, 64, 65, 6, 53, 8, 54curf11 16866 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  ( ( 1st `  K ) `  y )  =  ( X ( 1st `  F
) y ) )
67 df-ov 6653 . . . . . . . . . . 11  |-  ( X ( 1st `  F
) y )  =  ( ( 1st `  F
) `  <. X , 
y >. )
6866, 67syl6req 2673 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  ( ( 1st `  F ) `  <. X ,  y >.
)  =  ( ( 1st `  K ) `
 y ) )
691, 2, 63, 64, 65, 6, 53, 8, 57curf11 16866 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  ( ( 1st `  K ) `  z )  =  ( X ( 1st `  F
) z ) )
70 df-ov 6653 . . . . . . . . . . 11  |-  ( X ( 1st `  F
) z )  =  ( ( 1st `  F
) `  <. X , 
z >. )
7169, 70syl6req 2673 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  ( ( 1st `  F ) `  <. X ,  z >.
)  =  ( ( 1st `  K ) `
 z ) )
7268, 71oveq12d 6668 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  ( (
( 1st `  F
) `  <. X , 
y >. ) ( Hom  `  E ) ( ( 1st `  F ) `
 <. X ,  z
>. ) )  =  ( ( ( 1st `  K
) `  y )
( Hom  `  E ) ( ( 1st `  K
) `  z )
) )
7362, 72feq23d 6040 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  ( ( <. X ,  y >.
( 2nd `  F
) <. X ,  z
>. ) : ( <. X ,  y >. ( Hom  `  ( C  X.c  D ) ) <. X ,  z >. ) --> ( ( ( 1st `  F ) `  <. X ,  y >. )
( Hom  `  E ) ( ( 1st `  F
) `  <. X , 
z >. ) )  <->  ( <. X ,  y >. ( 2nd `  F ) <. X ,  z >. ) : ( ( ( 1st `  <. X , 
y >. ) ( Hom  `  C ) ( 1st `  <. X ,  z
>. ) )  X.  (
( 2nd `  <. X ,  y >. )
( Hom  `  D ) ( 2nd `  <. X ,  z >. )
) ) --> ( ( ( 1st `  K
) `  y )
( Hom  `  E ) ( ( 1st `  K
) `  z )
) ) )
7460, 73mpbid 222 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  ( <. X ,  y >. ( 2nd `  F ) <. X ,  z >. ) : ( ( ( 1st `  <. X , 
y >. ) ( Hom  `  C ) ( 1st `  <. X ,  z
>. ) )  X.  (
( 2nd `  <. X ,  y >. )
( Hom  `  D ) ( 2nd `  <. X ,  z >. )
) ) --> ( ( ( 1st `  K
) `  y )
( Hom  `  E ) ( ( 1st `  K
) `  z )
) )
752, 61, 10, 63, 53catidcl 16343 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  ( ( Id `  C ) `  X )  e.  ( X ( Hom  `  C
) X ) )
76 op1stg 7180 . . . . . . . . . 10  |-  ( ( X  e.  A  /\  y  e.  B )  ->  ( 1st `  <. X ,  y >. )  =  X )
7753, 54, 76syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  ( 1st ` 
<. X ,  y >.
)  =  X )
78 op1stg 7180 . . . . . . . . . 10  |-  ( ( X  e.  A  /\  z  e.  B )  ->  ( 1st `  <. X ,  z >. )  =  X )
7953, 57, 78syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  ( 1st ` 
<. X ,  z >.
)  =  X )
8077, 79oveq12d 6668 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  ( ( 1st `  <. X ,  y
>. ) ( Hom  `  C
) ( 1st `  <. X ,  z >. )
)  =  ( X ( Hom  `  C
) X ) )
8175, 80eleqtrrd 2704 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  ( ( Id `  C ) `  X )  e.  ( ( 1st `  <. X ,  y >. )
( Hom  `  C ) ( 1st `  <. X ,  z >. )
) )
82 simpr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  g  e.  ( y ( Hom  `  D ) z ) )
83 op2ndg 7181 . . . . . . . . . 10  |-  ( ( X  e.  A  /\  y  e.  B )  ->  ( 2nd `  <. X ,  y >. )  =  y )
8453, 54, 83syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  ( 2nd ` 
<. X ,  y >.
)  =  y )
85 op2ndg 7181 . . . . . . . . . 10  |-  ( ( X  e.  A  /\  z  e.  B )  ->  ( 2nd `  <. X ,  z >. )  =  z )
8653, 57, 85syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  ( 2nd ` 
<. X ,  z >.
)  =  z )
8784, 86oveq12d 6668 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  ( ( 2nd `  <. X ,  y
>. ) ( Hom  `  D
) ( 2nd `  <. X ,  z >. )
)  =  ( y ( Hom  `  D
) z ) )
8882, 87eleqtrrd 2704 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  g  e.  ( ( 2nd `  <. X ,  y >. )
( Hom  `  D ) ( 2nd `  <. X ,  z >. )
) )
8974, 81, 88fovrnd 6806 . . . . . 6  |-  ( ( ( ph  /\  (
y  e.  B  /\  z  e.  B )
)  /\  g  e.  ( y ( Hom  `  D ) z ) )  ->  ( (
( Id `  C
) `  X )
( <. X ,  y
>. ( 2nd `  F
) <. X ,  z
>. ) g )  e.  ( ( ( 1st `  K ) `  y
) ( Hom  `  E
) ( ( 1st `  K ) `  z
) ) )
90 eqid 2622 . . . . . 6  |-  ( g  e.  ( y ( Hom  `  D )
z )  |->  ( ( ( Id `  C
) `  X )
( <. X ,  y
>. ( 2nd `  F
) <. X ,  z
>. ) g ) )  =  ( g  e.  ( y ( Hom  `  D ) z ) 
|->  ( ( ( Id
`  C ) `  X ) ( <. X ,  y >. ( 2nd `  F )
<. X ,  z >.
) g ) )
9189, 90fmptd 6385 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( g  e.  ( y ( Hom  `  D
) z )  |->  ( ( ( Id `  C ) `  X
) ( <. X , 
y >. ( 2nd `  F
) <. X ,  z
>. ) g ) ) : ( y ( Hom  `  D )
z ) --> ( ( ( 1st `  K
) `  y )
( Hom  `  E ) ( ( 1st `  K
) `  z )
) )
9219oveqd 6667 . . . . . . 7  |-  ( ph  ->  ( y ( 2nd `  K ) z )  =  ( y ( y  e.  B , 
z  e.  B  |->  ( g  e.  ( y ( Hom  `  D
) z )  |->  ( ( ( Id `  C ) `  X
) ( <. X , 
y >. ( 2nd `  F
) <. X ,  z
>. ) g ) ) ) z ) )
9345ovmpt4g 6783 . . . . . . . 8  |-  ( ( y  e.  B  /\  z  e.  B  /\  ( g  e.  ( y ( Hom  `  D
) z )  |->  ( ( ( Id `  C ) `  X
) ( <. X , 
y >. ( 2nd `  F
) <. X ,  z
>. ) g ) )  e.  _V )  -> 
( y ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y ( Hom  `  D )
z )  |->  ( ( ( Id `  C
) `  X )
( <. X ,  y
>. ( 2nd `  F
) <. X ,  z
>. ) g ) ) ) z )  =  ( g  e.  ( y ( Hom  `  D
) z )  |->  ( ( ( Id `  C ) `  X
) ( <. X , 
y >. ( 2nd `  F
) <. X ,  z
>. ) g ) ) )
9447, 93mp3an3 1413 . . . . . . 7  |-  ( ( y  e.  B  /\  z  e.  B )  ->  ( y ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y ( Hom  `  D )
z )  |->  ( ( ( Id `  C
) `  X )
( <. X ,  y
>. ( 2nd `  F
) <. X ,  z
>. ) g ) ) ) z )  =  ( g  e.  ( y ( Hom  `  D
) z )  |->  ( ( ( Id `  C ) `  X
) ( <. X , 
y >. ( 2nd `  F
) <. X ,  z
>. ) g ) ) )
9592, 94sylan9eq 2676 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( y ( 2nd `  K ) z )  =  ( g  e.  ( y ( Hom  `  D ) z ) 
|->  ( ( ( Id
`  C ) `  X ) ( <. X ,  y >. ( 2nd `  F )
<. X ,  z >.
) g ) ) )
9695feq1d 6030 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( y ( 2nd `  K ) z ) : ( y ( Hom  `  D
) z ) --> ( ( ( 1st `  K
) `  y )
( Hom  `  E ) ( ( 1st `  K
) `  z )
)  <->  ( g  e.  ( y ( Hom  `  D ) z ) 
|->  ( ( ( Id
`  C ) `  X ) ( <. X ,  y >. ( 2nd `  F )
<. X ,  z >.
) g ) ) : ( y ( Hom  `  D )
z ) --> ( ( ( 1st `  K
) `  y )
( Hom  `  E ) ( ( 1st `  K
) `  z )
) ) )
9791, 96mpbird 247 . . . 4  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( y ( 2nd `  K ) z ) : ( y ( Hom  `  D )
z ) --> ( ( ( 1st `  K
) `  y )
( Hom  `  E ) ( ( 1st `  K
) `  z )
) )
983adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  B )  ->  C  e.  Cat )
994adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  Cat )
100 eqid 2622 . . . . . . . . 9  |-  ( Id
`  ( C  X.c  D
) )  =  ( Id `  ( C  X.c  D ) )
10131, 98, 99, 2, 6, 10, 24, 100, 38, 39xpcid 16829 . . . . . . . 8  |-  ( (
ph  /\  y  e.  B )  ->  (
( Id `  ( C  X.c  D ) ) `  <. X ,  y >.
)  =  <. (
( Id `  C
) `  X ) ,  ( ( Id
`  D ) `  y ) >. )
102101fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  y  e.  B )  ->  (
( <. X ,  y
>. ( 2nd `  F
) <. X ,  y
>. ) `  ( ( Id `  ( C  X.c  D ) ) `  <. X ,  y >.
) )  =  ( ( <. X ,  y
>. ( 2nd `  F
) <. X ,  y
>. ) `  <. (
( Id `  C
) `  X ) ,  ( ( Id
`  D ) `  y ) >. )
)
103 df-ov 6653 . . . . . . 7  |-  ( ( ( Id `  C
) `  X )
( <. X ,  y
>. ( 2nd `  F
) <. X ,  y
>. ) ( ( Id
`  D ) `  y ) )  =  ( ( <. X , 
y >. ( 2nd `  F
) <. X ,  y
>. ) `  <. (
( Id `  C
) `  X ) ,  ( ( Id
`  D ) `  y ) >. )
104102, 103syl6eqr 2674 . . . . . 6  |-  ( (
ph  /\  y  e.  B )  ->  (
( <. X ,  y
>. ( 2nd `  F
) <. X ,  y
>. ) `  ( ( Id `  ( C  X.c  D ) ) `  <. X ,  y >.
) )  =  ( ( ( Id `  C ) `  X
) ( <. X , 
y >. ( 2nd `  F
) <. X ,  y
>. ) ( ( Id
`  D ) `  y ) ) )
10535adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  B )  ->  ( 1st `  F ) ( ( C  X.c  D ) 
Func  E ) ( 2nd `  F ) )
1067, 55sylan 488 . . . . . . 7  |-  ( (
ph  /\  y  e.  B )  ->  <. X , 
y >.  e.  ( A  X.  B ) )
10732, 100, 25, 105, 106funcid 16530 . . . . . 6  |-  ( (
ph  /\  y  e.  B )  ->  (
( <. X ,  y
>. ( 2nd `  F
) <. X ,  y
>. ) `  ( ( Id `  ( C  X.c  D ) ) `  <. X ,  y >.
) )  =  ( ( Id `  E
) `  ( ( 1st `  F ) `  <. X ,  y >.
) ) )
108104, 107eqtr3d 2658 . . . . 5  |-  ( (
ph  /\  y  e.  B )  ->  (
( ( Id `  C ) `  X
) ( <. X , 
y >. ( 2nd `  F
) <. X ,  y
>. ) ( ( Id
`  D ) `  y ) )  =  ( ( Id `  E ) `  (
( 1st `  F
) `  <. X , 
y >. ) ) )
1095adantr 481 . . . . . 6  |-  ( (
ph  /\  y  e.  B )  ->  F  e.  ( ( C  X.c  D
)  Func  E )
)
1106, 9, 24, 99, 39catidcl 16343 . . . . . 6  |-  ( (
ph  /\  y  e.  B )  ->  (
( Id `  D
) `  y )  e.  ( y ( Hom  `  D ) y ) )
1111, 2, 98, 99, 109, 6, 38, 8, 39, 9, 10, 39, 110curf12 16867 . . . . 5  |-  ( (
ph  /\  y  e.  B )  ->  (
( y ( 2nd `  K ) y ) `
 ( ( Id
`  D ) `  y ) )  =  ( ( ( Id
`  C ) `  X ) ( <. X ,  y >. ( 2nd `  F )
<. X ,  y >.
) ( ( Id
`  D ) `  y ) ) )
1121, 2, 98, 99, 109, 6, 38, 8, 39curf11 16866 . . . . . . 7  |-  ( (
ph  /\  y  e.  B )  ->  (
( 1st `  K
) `  y )  =  ( X ( 1st `  F ) y ) )
113112, 67syl6eq 2672 . . . . . 6  |-  ( (
ph  /\  y  e.  B )  ->  (
( 1st `  K
) `  y )  =  ( ( 1st `  F ) `  <. X ,  y >. )
)
114113fveq2d 6195 . . . . 5  |-  ( (
ph  /\  y  e.  B )  ->  (
( Id `  E
) `  ( ( 1st `  K ) `  y ) )  =  ( ( Id `  E ) `  (
( 1st `  F
) `  <. X , 
y >. ) ) )
115108, 111, 1143eqtr4d 2666 . . . 4  |-  ( (
ph  /\  y  e.  B )  ->  (
( y ( 2nd `  K ) y ) `
 ( ( Id
`  D ) `  y ) )  =  ( ( Id `  E ) `  (
( 1st `  K
) `  y )
) )
11673ad2ant1 1082 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  X  e.  A
)
117 simp21 1094 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  y  e.  B
)
118 simp22 1095 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  z  e.  B
)
119 eqid 2622 . . . . . . . . . 10  |-  (comp `  C )  =  (comp `  C )
120 eqid 2622 . . . . . . . . . 10  |-  (comp `  ( C  X.c  D )
)  =  (comp `  ( C  X.c  D )
)
121 simp23 1096 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  w  e.  B
)
12233ad2ant1 1082 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  C  e.  Cat )
1232, 61, 10, 122, 116catidcl 16343 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( ( Id
`  C ) `  X )  e.  ( X ( Hom  `  C
) X ) )
124 simp3l 1089 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  g  e.  ( y ( Hom  `  D
) z ) )
125 simp3r 1090 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  h  e.  ( z ( Hom  `  D
) w ) )
12631, 2, 6, 61, 9, 116, 117, 116, 118, 119, 26, 120, 116, 121, 123, 124, 123, 125xpcco2 16827 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( <. (
( Id `  C
) `  X ) ,  h >. ( <. <. X , 
y >. ,  <. X , 
z >. >. (comp `  ( C  X.c  D ) ) <. X ,  w >. )
<. ( ( Id `  C ) `  X
) ,  g >.
)  =  <. (
( ( Id `  C ) `  X
) ( <. X ,  X >. (comp `  C
) X ) ( ( Id `  C
) `  X )
) ,  ( h ( <. y ,  z
>. (comp `  D )
w ) g )
>. )
1272, 61, 10, 122, 116, 119, 116, 123catlid 16344 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( ( ( Id `  C ) `
 X ) (
<. X ,  X >. (comp `  C ) X ) ( ( Id `  C ) `  X
) )  =  ( ( Id `  C
) `  X )
)
128127opeq1d 4408 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  <. ( ( ( Id `  C ) `
 X ) (
<. X ,  X >. (comp `  C ) X ) ( ( Id `  C ) `  X
) ) ,  ( h ( <. y ,  z >. (comp `  D ) w ) g ) >.  =  <. ( ( Id `  C
) `  X ) ,  ( h (
<. y ,  z >.
(comp `  D )
w ) g )
>. )
129126, 128eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( <. (
( Id `  C
) `  X ) ,  h >. ( <. <. X , 
y >. ,  <. X , 
z >. >. (comp `  ( C  X.c  D ) ) <. X ,  w >. )
<. ( ( Id `  C ) `  X
) ,  g >.
)  =  <. (
( Id `  C
) `  X ) ,  ( h (
<. y ,  z >.
(comp `  D )
w ) g )
>. )
130129fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( ( <. X ,  y >. ( 2nd `  F )
<. X ,  w >. ) `
 ( <. (
( Id `  C
) `  X ) ,  h >. ( <. <. X , 
y >. ,  <. X , 
z >. >. (comp `  ( C  X.c  D ) ) <. X ,  w >. )
<. ( ( Id `  C ) `  X
) ,  g >.
) )  =  ( ( <. X ,  y
>. ( 2nd `  F
) <. X ,  w >. ) `  <. (
( Id `  C
) `  X ) ,  ( h (
<. y ,  z >.
(comp `  D )
w ) g )
>. ) )
131 df-ov 6653 . . . . . . 7  |-  ( ( ( Id `  C
) `  X )
( <. X ,  y
>. ( 2nd `  F
) <. X ,  w >. ) ( h (
<. y ,  z >.
(comp `  D )
w ) g ) )  =  ( (
<. X ,  y >.
( 2nd `  F
) <. X ,  w >. ) `  <. (
( Id `  C
) `  X ) ,  ( h (
<. y ,  z >.
(comp `  D )
w ) g )
>. )
132130, 131syl6eqr 2674 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( ( <. X ,  y >. ( 2nd `  F )
<. X ,  w >. ) `
 ( <. (
( Id `  C
) `  X ) ,  h >. ( <. <. X , 
y >. ,  <. X , 
z >. >. (comp `  ( C  X.c  D ) ) <. X ,  w >. )
<. ( ( Id `  C ) `  X
) ,  g >.
) )  =  ( ( ( Id `  C ) `  X
) ( <. X , 
y >. ( 2nd `  F
) <. X ,  w >. ) ( h (
<. y ,  z >.
(comp `  D )
w ) g ) ) )
133353ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( 1st `  F
) ( ( C  X.c  D )  Func  E
) ( 2nd `  F
) )
134116, 117, 55syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  <. X ,  y
>.  e.  ( A  X.  B ) )
135116, 118, 58syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  <. X ,  z
>.  e.  ( A  X.  B ) )
136 opelxpi 5148 . . . . . . . 8  |-  ( ( X  e.  A  /\  w  e.  B )  -> 
<. X ,  w >.  e.  ( A  X.  B
) )
137116, 121, 136syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  <. X ,  w >.  e.  ( A  X.  B ) )
138 opelxpi 5148 . . . . . . . . 9  |-  ( ( ( ( Id `  C ) `  X
)  e.  ( X ( Hom  `  C
) X )  /\  g  e.  ( y
( Hom  `  D ) z ) )  ->  <. ( ( Id `  C ) `  X
) ,  g >.  e.  ( ( X ( Hom  `  C ) X )  X.  (
y ( Hom  `  D
) z ) ) )
139123, 124, 138syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  <. ( ( Id
`  C ) `  X ) ,  g
>.  e.  ( ( X ( Hom  `  C
) X )  X.  ( y ( Hom  `  D ) z ) ) )
14031, 2, 6, 61, 9, 116, 117, 116, 118, 51xpchom2 16826 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( <. X , 
y >. ( Hom  `  ( C  X.c  D ) ) <. X ,  z >. )  =  ( ( X ( Hom  `  C
) X )  X.  ( y ( Hom  `  D ) z ) ) )
141139, 140eleqtrrd 2704 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  <. ( ( Id
`  C ) `  X ) ,  g
>.  e.  ( <. X , 
y >. ( Hom  `  ( C  X.c  D ) ) <. X ,  z >. ) )
142 opelxpi 5148 . . . . . . . . 9  |-  ( ( ( ( Id `  C ) `  X
)  e.  ( X ( Hom  `  C
) X )  /\  h  e.  ( z
( Hom  `  D ) w ) )  ->  <. ( ( Id `  C ) `  X
) ,  h >.  e.  ( ( X ( Hom  `  C ) X )  X.  (
z ( Hom  `  D
) w ) ) )
143123, 125, 142syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  <. ( ( Id
`  C ) `  X ) ,  h >.  e.  ( ( X ( Hom  `  C
) X )  X.  ( z ( Hom  `  D ) w ) ) )
14431, 2, 6, 61, 9, 116, 118, 116, 121, 51xpchom2 16826 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( <. X , 
z >. ( Hom  `  ( C  X.c  D ) ) <. X ,  w >. )  =  ( ( X ( Hom  `  C
) X )  X.  ( z ( Hom  `  D ) w ) ) )
145143, 144eleqtrrd 2704 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  <. ( ( Id
`  C ) `  X ) ,  h >.  e.  ( <. X , 
z >. ( Hom  `  ( C  X.c  D ) ) <. X ,  w >. ) )
14632, 51, 120, 27, 133, 134, 135, 137, 141, 145funcco 16531 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( ( <. X ,  y >. ( 2nd `  F )
<. X ,  w >. ) `
 ( <. (
( Id `  C
) `  X ) ,  h >. ( <. <. X , 
y >. ,  <. X , 
z >. >. (comp `  ( C  X.c  D ) ) <. X ,  w >. )
<. ( ( Id `  C ) `  X
) ,  g >.
) )  =  ( ( ( <. X , 
z >. ( 2nd `  F
) <. X ,  w >. ) `  <. (
( Id `  C
) `  X ) ,  h >. ) ( <.
( ( 1st `  F
) `  <. X , 
y >. ) ,  ( ( 1st `  F
) `  <. X , 
z >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. X ,  w >. ) ) ( (
<. X ,  y >.
( 2nd `  F
) <. X ,  z
>. ) `  <. (
( Id `  C
) `  X ) ,  g >. )
) )
147132, 146eqtr3d 2658 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( ( ( Id `  C ) `
 X ) (
<. X ,  y >.
( 2nd `  F
) <. X ,  w >. ) ( h (
<. y ,  z >.
(comp `  D )
w ) g ) )  =  ( ( ( <. X ,  z
>. ( 2nd `  F
) <. X ,  w >. ) `  <. (
( Id `  C
) `  X ) ,  h >. ) ( <.
( ( 1st `  F
) `  <. X , 
y >. ) ,  ( ( 1st `  F
) `  <. X , 
z >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. X ,  w >. ) ) ( (
<. X ,  y >.
( 2nd `  F
) <. X ,  z
>. ) `  <. (
( Id `  C
) `  X ) ,  g >. )
) )
14843ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  D  e.  Cat )
14953ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  F  e.  ( ( C  X.c  D ) 
Func  E ) )
1506, 9, 26, 148, 117, 118, 121, 124, 125catcocl 16346 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( h (
<. y ,  z >.
(comp `  D )
w ) g )  e.  ( y ( Hom  `  D )
w ) )
1511, 2, 122, 148, 149, 6, 116, 8, 117, 9, 10, 121, 150curf12 16867 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( ( y ( 2nd `  K
) w ) `  ( h ( <.
y ,  z >.
(comp `  D )
w ) g ) )  =  ( ( ( Id `  C
) `  X )
( <. X ,  y
>. ( 2nd `  F
) <. X ,  w >. ) ( h (
<. y ,  z >.
(comp `  D )
w ) g ) ) )
1521, 2, 122, 148, 149, 6, 116, 8, 117curf11 16866 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( ( 1st `  K ) `  y
)  =  ( X ( 1st `  F
) y ) )
153152, 67syl6eq 2672 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( ( 1st `  K ) `  y
)  =  ( ( 1st `  F ) `
 <. X ,  y
>. ) )
1541, 2, 122, 148, 149, 6, 116, 8, 118curf11 16866 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( ( 1st `  K ) `  z
)  =  ( X ( 1st `  F
) z ) )
155154, 70syl6eq 2672 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( ( 1st `  K ) `  z
)  =  ( ( 1st `  F ) `
 <. X ,  z
>. ) )
156153, 155opeq12d 4410 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  <. ( ( 1st `  K ) `  y
) ,  ( ( 1st `  K ) `
 z ) >.  =  <. ( ( 1st `  F ) `  <. X ,  y >. ) ,  ( ( 1st `  F ) `  <. X ,  z >. ) >. )
1571, 2, 122, 148, 149, 6, 116, 8, 121curf11 16866 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( ( 1st `  K ) `  w
)  =  ( X ( 1st `  F
) w ) )
158 df-ov 6653 . . . . . . . 8  |-  ( X ( 1st `  F
) w )  =  ( ( 1st `  F
) `  <. X ,  w >. )
159157, 158syl6eq 2672 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( ( 1st `  K ) `  w
)  =  ( ( 1st `  F ) `
 <. X ,  w >. ) )
160156, 159oveq12d 6668 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( <. (
( 1st `  K
) `  y ) ,  ( ( 1st `  K ) `  z
) >. (comp `  E
) ( ( 1st `  K ) `  w
) )  =  (
<. ( ( 1st `  F
) `  <. X , 
y >. ) ,  ( ( 1st `  F
) `  <. X , 
z >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. X ,  w >. ) ) )
1611, 2, 122, 148, 149, 6, 116, 8, 118, 9, 10, 121, 125curf12 16867 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( ( z ( 2nd `  K
) w ) `  h )  =  ( ( ( Id `  C ) `  X
) ( <. X , 
z >. ( 2nd `  F
) <. X ,  w >. ) h ) )
162 df-ov 6653 . . . . . . 7  |-  ( ( ( Id `  C
) `  X )
( <. X ,  z
>. ( 2nd `  F
) <. X ,  w >. ) h )  =  ( ( <. X , 
z >. ( 2nd `  F
) <. X ,  w >. ) `  <. (
( Id `  C
) `  X ) ,  h >. )
163161, 162syl6eq 2672 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( ( z ( 2nd `  K
) w ) `  h )  =  ( ( <. X ,  z
>. ( 2nd `  F
) <. X ,  w >. ) `  <. (
( Id `  C
) `  X ) ,  h >. ) )
1641, 2, 122, 148, 149, 6, 116, 8, 117, 9, 10, 118, 124curf12 16867 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( ( y ( 2nd `  K
) z ) `  g )  =  ( ( ( Id `  C ) `  X
) ( <. X , 
y >. ( 2nd `  F
) <. X ,  z
>. ) g ) )
165 df-ov 6653 . . . . . . 7  |-  ( ( ( Id `  C
) `  X )
( <. X ,  y
>. ( 2nd `  F
) <. X ,  z
>. ) g )  =  ( ( <. X , 
y >. ( 2nd `  F
) <. X ,  z
>. ) `  <. (
( Id `  C
) `  X ) ,  g >. )
166164, 165syl6eq 2672 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( ( y ( 2nd `  K
) z ) `  g )  =  ( ( <. X ,  y
>. ( 2nd `  F
) <. X ,  z
>. ) `  <. (
( Id `  C
) `  X ) ,  g >. )
)
167160, 163, 166oveq123d 6671 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( ( ( z ( 2nd `  K
) w ) `  h ) ( <.
( ( 1st `  K
) `  y ) ,  ( ( 1st `  K ) `  z
) >. (comp `  E
) ( ( 1st `  K ) `  w
) ) ( ( y ( 2nd `  K
) z ) `  g ) )  =  ( ( ( <. X ,  z >. ( 2nd `  F )
<. X ,  w >. ) `
 <. ( ( Id
`  C ) `  X ) ,  h >. ) ( <. (
( 1st `  F
) `  <. X , 
y >. ) ,  ( ( 1st `  F
) `  <. X , 
z >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. X ,  w >. ) ) ( (
<. X ,  y >.
( 2nd `  F
) <. X ,  z
>. ) `  <. (
( Id `  C
) `  X ) ,  g >. )
) )
168147, 151, 1673eqtr4d 2666 . . . 4  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  w  e.  B )  /\  (
g  e.  ( y ( Hom  `  D
) z )  /\  h  e.  ( z
( Hom  `  D ) w ) ) )  ->  ( ( y ( 2nd `  K
) w ) `  ( h ( <.
y ,  z >.
(comp `  D )
w ) g ) )  =  ( ( ( z ( 2nd `  K ) w ) `
 h ) (
<. ( ( 1st `  K
) `  y ) ,  ( ( 1st `  K ) `  z
) >. (comp `  E
) ( ( 1st `  K ) `  w
) ) ( ( y ( 2nd `  K
) z ) `  g ) ) )
1696, 22, 9, 23, 24, 25, 26, 27, 4, 30, 44, 50, 97, 115, 168isfuncd 16525 . . 3  |-  ( ph  ->  ( 1st `  K
) ( D  Func  E ) ( 2nd `  K
) )
170 df-br 4654 . . 3  |-  ( ( 1st `  K ) ( D  Func  E
) ( 2nd `  K
)  <->  <. ( 1st `  K
) ,  ( 2nd `  K ) >.  e.  ( D  Func  E )
)
171169, 170sylib 208 . 2  |-  ( ph  -> 
<. ( 1st `  K
) ,  ( 2nd `  K ) >.  e.  ( D  Func  E )
)
17221, 171eqeltrd 2701 1  |-  ( ph  ->  K  e.  ( D 
Func  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   Rel wrel 5119    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326    Func cfunc 16514    X.c cxpc 16808   curryF ccurf 16850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-func 16518  df-xpc 16812  df-curf 16854
This theorem is referenced by:  curf2cl  16871  curfcl  16872
  Copyright terms: Public domain W3C validator