| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrcmp | Structured version Visualization version Unicode version | ||
| Description: If two lattice elements that cover a third are comparable, then they are equal. (Contributed by NM, 6-Feb-2012.) |
| Ref | Expression |
|---|---|
| cvrcmp.b |
|
| cvrcmp.l |
|
| cvrcmp.c |
|
| Ref | Expression |
|---|---|
| cvrcmp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1064 |
. . . . 5
| |
| 2 | simpl23 1141 |
. . . . 5
| |
| 3 | simpl21 1139 |
. . . . 5
| |
| 4 | simpl3l 1116 |
. . . . 5
| |
| 5 | cvrcmp.b |
. . . . . 6
| |
| 6 | cvrcmp.c |
. . . . . 6
| |
| 7 | 5, 6 | cvrne 34568 |
. . . . 5
|
| 8 | 1, 2, 3, 4, 7 | syl31anc 1329 |
. . . 4
|
| 9 | cvrcmp.l |
. . . . . . . 8
| |
| 10 | 5, 9, 6 | cvrle 34565 |
. . . . . . 7
|
| 11 | 1, 2, 3, 4, 10 | syl31anc 1329 |
. . . . . 6
|
| 12 | simpr 477 |
. . . . . 6
| |
| 13 | simpl22 1140 |
. . . . . . 7
| |
| 14 | simpl3r 1117 |
. . . . . . 7
| |
| 15 | 5, 9, 6 | cvrnbtwn4 34566 |
. . . . . . 7
|
| 16 | 1, 2, 13, 3, 14, 15 | syl131anc 1339 |
. . . . . 6
|
| 17 | 11, 12, 16 | mpbi2and 956 |
. . . . 5
|
| 18 | neor 2885 |
. . . . 5
| |
| 19 | 17, 18 | sylib 208 |
. . . 4
|
| 20 | 8, 19 | mpd 15 |
. . 3
|
| 21 | 20 | ex 450 |
. 2
|
| 22 | simp1 1061 |
. . . 4
| |
| 23 | simp21 1094 |
. . . 4
| |
| 24 | 5, 9 | posref 16951 |
. . . 4
|
| 25 | 22, 23, 24 | syl2anc 693 |
. . 3
|
| 26 | breq2 4657 |
. . 3
| |
| 27 | 25, 26 | syl5ibcom 235 |
. 2
|
| 28 | 21, 27 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-preset 16928 df-poset 16946 df-plt 16958 df-covers 34553 |
| This theorem is referenced by: cvrcmp2 34571 atcmp 34598 llncmp 34808 lplncmp 34848 lvolcmp 34903 lhp2lt 35287 |
| Copyright terms: Public domain | W3C validator |