Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrcmp Structured version   Visualization version   Unicode version

Theorem cvrcmp 34570
Description: If two lattice elements that cover a third are comparable, then they are equal. (Contributed by NM, 6-Feb-2012.)
Hypotheses
Ref Expression
cvrcmp.b  |-  B  =  ( Base `  K
)
cvrcmp.l  |-  .<_  =  ( le `  K )
cvrcmp.c  |-  C  =  (  <o  `  K )
Assertion
Ref Expression
cvrcmp  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  ( Z C X  /\  Z C Y ) )  ->  ( X  .<_  Y  <->  X  =  Y ) )

Proof of Theorem cvrcmp
StepHypRef Expression
1 simpl1 1064 . . . . 5  |-  ( ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( Z C X  /\  Z C Y ) )  /\  X  .<_  Y )  ->  K  e.  Poset )
2 simpl23 1141 . . . . 5  |-  ( ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( Z C X  /\  Z C Y ) )  /\  X  .<_  Y )  ->  Z  e.  B )
3 simpl21 1139 . . . . 5  |-  ( ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( Z C X  /\  Z C Y ) )  /\  X  .<_  Y )  ->  X  e.  B )
4 simpl3l 1116 . . . . 5  |-  ( ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( Z C X  /\  Z C Y ) )  /\  X  .<_  Y )  ->  Z C X )
5 cvrcmp.b . . . . . 6  |-  B  =  ( Base `  K
)
6 cvrcmp.c . . . . . 6  |-  C  =  (  <o  `  K )
75, 6cvrne 34568 . . . . 5  |-  ( ( ( K  e.  Poset  /\  Z  e.  B  /\  X  e.  B )  /\  Z C X )  ->  Z  =/=  X
)
81, 2, 3, 4, 7syl31anc 1329 . . . 4  |-  ( ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( Z C X  /\  Z C Y ) )  /\  X  .<_  Y )  ->  Z  =/=  X )
9 cvrcmp.l . . . . . . . 8  |-  .<_  =  ( le `  K )
105, 9, 6cvrle 34565 . . . . . . 7  |-  ( ( ( K  e.  Poset  /\  Z  e.  B  /\  X  e.  B )  /\  Z C X )  ->  Z  .<_  X )
111, 2, 3, 4, 10syl31anc 1329 . . . . . 6  |-  ( ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( Z C X  /\  Z C Y ) )  /\  X  .<_  Y )  ->  Z  .<_  X )
12 simpr 477 . . . . . 6  |-  ( ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( Z C X  /\  Z C Y ) )  /\  X  .<_  Y )  ->  X  .<_  Y )
13 simpl22 1140 . . . . . . 7  |-  ( ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( Z C X  /\  Z C Y ) )  /\  X  .<_  Y )  ->  Y  e.  B )
14 simpl3r 1117 . . . . . . 7  |-  ( ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( Z C X  /\  Z C Y ) )  /\  X  .<_  Y )  ->  Z C Y )
155, 9, 6cvrnbtwn4 34566 . . . . . . 7  |-  ( ( K  e.  Poset  /\  ( Z  e.  B  /\  Y  e.  B  /\  X  e.  B )  /\  Z C Y )  ->  ( ( Z 
.<_  X  /\  X  .<_  Y )  <->  ( Z  =  X  \/  X  =  Y ) ) )
161, 2, 13, 3, 14, 15syl131anc 1339 . . . . . 6  |-  ( ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( Z C X  /\  Z C Y ) )  /\  X  .<_  Y )  -> 
( ( Z  .<_  X  /\  X  .<_  Y )  <-> 
( Z  =  X  \/  X  =  Y ) ) )
1711, 12, 16mpbi2and 956 . . . . 5  |-  ( ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( Z C X  /\  Z C Y ) )  /\  X  .<_  Y )  -> 
( Z  =  X  \/  X  =  Y ) )
18 neor 2885 . . . . 5  |-  ( ( Z  =  X  \/  X  =  Y )  <->  ( Z  =/=  X  ->  X  =  Y )
)
1917, 18sylib 208 . . . 4  |-  ( ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( Z C X  /\  Z C Y ) )  /\  X  .<_  Y )  -> 
( Z  =/=  X  ->  X  =  Y ) )
208, 19mpd 15 . . 3  |-  ( ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( Z C X  /\  Z C Y ) )  /\  X  .<_  Y )  ->  X  =  Y )
2120ex 450 . 2  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  ( Z C X  /\  Z C Y ) )  ->  ( X  .<_  Y  ->  X  =  Y ) )
22 simp1 1061 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  ( Z C X  /\  Z C Y ) )  ->  K  e.  Poset )
23 simp21 1094 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  ( Z C X  /\  Z C Y ) )  ->  X  e.  B )
245, 9posref 16951 . . . 4  |-  ( ( K  e.  Poset  /\  X  e.  B )  ->  X  .<_  X )
2522, 23, 24syl2anc 693 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  ( Z C X  /\  Z C Y ) )  ->  X  .<_  X )
26 breq2 4657 . . 3  |-  ( X  =  Y  ->  ( X  .<_  X  <->  X  .<_  Y ) )
2725, 26syl5ibcom 235 . 2  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  ( Z C X  /\  Z C Y ) )  ->  ( X  =  Y  ->  X 
.<_  Y ) )
2821, 27impbid 202 1  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  ( Z C X  /\  Z C Y ) )  ->  ( X  .<_  Y  <->  X  =  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948   Posetcpo 16940    <o ccvr 34549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-preset 16928  df-poset 16946  df-plt 16958  df-covers 34553
This theorem is referenced by:  cvrcmp2  34571  atcmp  34598  llncmp  34808  lplncmp  34848  lvolcmp  34903  lhp2lt  35287
  Copyright terms: Public domain W3C validator