| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalawlem7 | Structured version Visualization version Unicode version | ||
| Description: Lemma for dalaw 35172. Second piece of dalawlem8 35164. (Contributed by NM, 6-Oct-2012.) |
| Ref | Expression |
|---|---|
| dalawlem.l |
|
| dalawlem.j |
|
| dalawlem.m |
|
| dalawlem.a |
|
| Ref | Expression |
|---|---|
| dalawlem7 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. 2
| |
| 2 | dalawlem.l |
. 2
| |
| 3 | simp11 1091 |
. . 3
| |
| 4 | hllat 34650 |
. . 3
| |
| 5 | 3, 4 | syl 17 |
. 2
|
| 6 | simp21 1094 |
. . . . 5
| |
| 7 | simp22 1095 |
. . . . 5
| |
| 8 | dalawlem.j |
. . . . . 6
| |
| 9 | dalawlem.a |
. . . . . 6
| |
| 10 | 1, 8, 9 | hlatjcl 34653 |
. . . . 5
|
| 11 | 3, 6, 7, 10 | syl3anc 1326 |
. . . 4
|
| 12 | simp31 1097 |
. . . . 5
| |
| 13 | 1, 9 | atbase 34576 |
. . . . 5
|
| 14 | 12, 13 | syl 17 |
. . . 4
|
| 15 | 1, 8 | latjcl 17051 |
. . . 4
|
| 16 | 5, 11, 14, 15 | syl3anc 1326 |
. . 3
|
| 17 | simp32 1098 |
. . . 4
| |
| 18 | 1, 9 | atbase 34576 |
. . . 4
|
| 19 | 17, 18 | syl 17 |
. . 3
|
| 20 | dalawlem.m |
. . . 4
| |
| 21 | 1, 20 | latmcl 17052 |
. . 3
|
| 22 | 5, 16, 19, 21 | syl3anc 1326 |
. 2
|
| 23 | simp23 1096 |
. . . 4
| |
| 24 | 1, 8, 9 | hlatjcl 34653 |
. . . 4
|
| 25 | 3, 7, 23, 24 | syl3anc 1326 |
. . 3
|
| 26 | simp33 1099 |
. . . 4
| |
| 27 | 1, 8, 9 | hlatjcl 34653 |
. . . 4
|
| 28 | 3, 17, 26, 27 | syl3anc 1326 |
. . 3
|
| 29 | 1, 20 | latmcl 17052 |
. . 3
|
| 30 | 5, 25, 28, 29 | syl3anc 1326 |
. 2
|
| 31 | 1, 8, 9 | hlatjcl 34653 |
. . . . 5
|
| 32 | 3, 23, 6, 31 | syl3anc 1326 |
. . . 4
|
| 33 | 1, 8, 9 | hlatjcl 34653 |
. . . . 5
|
| 34 | 3, 26, 12, 33 | syl3anc 1326 |
. . . 4
|
| 35 | 1, 20 | latmcl 17052 |
. . . 4
|
| 36 | 5, 32, 34, 35 | syl3anc 1326 |
. . 3
|
| 37 | 1, 8 | latjcl 17051 |
. . 3
|
| 38 | 5, 30, 36, 37 | syl3anc 1326 |
. 2
|
| 39 | hlol 34648 |
. . . . . 6
| |
| 40 | 3, 39 | syl 17 |
. . . . 5
|
| 41 | 1, 8, 9 | hlatjcl 34653 |
. . . . . . 7
|
| 42 | 3, 6, 12, 41 | syl3anc 1326 |
. . . . . 6
|
| 43 | 1, 9 | atbase 34576 |
. . . . . . 7
|
| 44 | 7, 43 | syl 17 |
. . . . . 6
|
| 45 | 1, 8 | latjcl 17051 |
. . . . . 6
|
| 46 | 5, 42, 44, 45 | syl3anc 1326 |
. . . . 5
|
| 47 | 1, 8, 9 | hlatjcl 34653 |
. . . . . 6
|
| 48 | 3, 7, 17, 47 | syl3anc 1326 |
. . . . 5
|
| 49 | 1, 20 | latmassOLD 34516 |
. . . . 5
|
| 50 | 40, 46, 48, 19, 49 | syl13anc 1328 |
. . . 4
|
| 51 | 8, 9 | hlatj32 34658 |
. . . . . 6
|
| 52 | 3, 6, 12, 7, 51 | syl13anc 1328 |
. . . . 5
|
| 53 | 2, 8, 9 | hlatlej2 34662 |
. . . . . . 7
|
| 54 | 3, 7, 17, 53 | syl3anc 1326 |
. . . . . 6
|
| 55 | 1, 2, 20 | latleeqm2 17080 |
. . . . . . 7
|
| 56 | 5, 19, 48, 55 | syl3anc 1326 |
. . . . . 6
|
| 57 | 54, 56 | mpbid 222 |
. . . . 5
|
| 58 | 52, 57 | oveq12d 6668 |
. . . 4
|
| 59 | 50, 58 | eqtr2d 2657 |
. . 3
|
| 60 | simp12 1092 |
. . . . . 6
| |
| 61 | 1, 20 | latmcl 17052 |
. . . . . . . 8
|
| 62 | 5, 42, 48, 61 | syl3anc 1326 |
. . . . . . 7
|
| 63 | 1, 2, 8 | latjlej1 17065 |
. . . . . . 7
|
| 64 | 5, 62, 25, 44, 63 | syl13anc 1328 |
. . . . . 6
|
| 65 | 60, 64 | mpd 15 |
. . . . 5
|
| 66 | 2, 8, 9 | hlatlej1 34661 |
. . . . . . 7
|
| 67 | 3, 7, 17, 66 | syl3anc 1326 |
. . . . . 6
|
| 68 | 1, 2, 8, 20, 9 | atmod4i1 35152 |
. . . . . 6
|
| 69 | 3, 7, 42, 48, 67, 68 | syl131anc 1339 |
. . . . 5
|
| 70 | 8, 9 | hlatj32 34658 |
. . . . . . 7
|
| 71 | 3, 7, 23, 7, 70 | syl13anc 1328 |
. . . . . 6
|
| 72 | 1, 8 | latjidm 17074 |
. . . . . . . 8
|
| 73 | 5, 44, 72 | syl2anc 693 |
. . . . . . 7
|
| 74 | 73 | oveq1d 6665 |
. . . . . 6
|
| 75 | 71, 74 | eqtrd 2656 |
. . . . 5
|
| 76 | 65, 69, 75 | 3brtr3d 4684 |
. . . 4
|
| 77 | 2, 8, 9 | hlatlej1 34661 |
. . . . 5
|
| 78 | 3, 17, 26, 77 | syl3anc 1326 |
. . . 4
|
| 79 | 1, 20 | latmcl 17052 |
. . . . . 6
|
| 80 | 5, 46, 48, 79 | syl3anc 1326 |
. . . . 5
|
| 81 | 1, 2, 20 | latmlem12 17083 |
. . . . 5
|
| 82 | 5, 80, 25, 19, 28, 81 | syl122anc 1335 |
. . . 4
|
| 83 | 76, 78, 82 | mp2and 715 |
. . 3
|
| 84 | 59, 83 | eqbrtrd 4675 |
. 2
|
| 85 | 1, 2, 8 | latlej1 17060 |
. . 3
|
| 86 | 5, 30, 36, 85 | syl3anc 1326 |
. 2
|
| 87 | 1, 2, 5, 22, 30, 38, 84, 86 | lattrd 17058 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-psubsp 34789 df-pmap 34790 df-padd 35082 |
| This theorem is referenced by: dalawlem8 35164 |
| Copyright terms: Public domain | W3C validator |