Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem4 Structured version   Visualization version   Unicode version

Theorem dalem4 34951
Description: Lemma for dalemdnee 34952. (Contributed by NM, 10-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalemc.l  |-  .<_  =  ( le `  K )
dalemc.j  |-  .\/  =  ( join `  K )
dalemc.a  |-  A  =  ( Atoms `  K )
dalem3.m  |-  ./\  =  ( meet `  K )
dalem3.o  |-  O  =  ( LPlanes `  K )
dalem3.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem3.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem3.d  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
dalem3.e  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
Assertion
Ref Expression
dalem4  |-  ( (
ph  /\  D  =/=  T )  ->  D  =/=  E )

Proof of Theorem dalem4
StepHypRef Expression
1 dalema.ph . . . . 5  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
2 dalemc.l . . . . 5  |-  .<_  =  ( le `  K )
3 dalemc.j . . . . 5  |-  .\/  =  ( join `  K )
4 dalemc.a . . . . 5  |-  A  =  ( Atoms `  K )
51, 2, 3, 4dalemswapyz 34942 . . . 4  |-  ( ph  ->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Z  e.  O  /\  Y  e.  O )  /\  ( ( -.  C  .<_  ( S  .\/  T
)  /\  -.  C  .<_  ( T  .\/  U
)  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( -.  C  .<_  ( P 
.\/  Q )  /\  -.  C  .<_  ( Q 
.\/  R )  /\  -.  C  .<_  ( R 
.\/  P ) )  /\  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T 
.\/  Q )  /\  C  .<_  ( U  .\/  R ) ) ) ) )
65adantr 481 . . 3  |-  ( (
ph  /\  D  =/=  T )  ->  ( (
( K  e.  HL  /\  C  e.  ( Base `  K ) )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
)  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  /\  ( Z  e.  O  /\  Y  e.  O
)  /\  ( ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T  .\/  Q )  /\  C  .<_  ( U 
.\/  R ) ) ) ) )
7 dalem3.d . . . . . 6  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
81dalemkelat 34910 . . . . . . 7  |-  ( ph  ->  K  e.  Lat )
91, 3, 4dalempjqeb 34931 . . . . . . 7  |-  ( ph  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
101, 3, 4dalemsjteb 34932 . . . . . . 7  |-  ( ph  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
11 eqid 2622 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
12 dalem3.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
1311, 12latmcom 17075 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  ( S  .\/  T )  e.  (
Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  =  ( ( S  .\/  T ) 
./\  ( P  .\/  Q ) ) )
148, 9, 10, 13syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  =  ( ( S  .\/  T )  ./\  ( P  .\/  Q ) ) )
157, 14syl5eq 2668 . . . . 5  |-  ( ph  ->  D  =  ( ( S  .\/  T ) 
./\  ( P  .\/  Q ) ) )
1615neeq1d 2853 . . . 4  |-  ( ph  ->  ( D  =/=  T  <->  ( ( S  .\/  T
)  ./\  ( P  .\/  Q ) )  =/= 
T ) )
1716biimpa 501 . . 3  |-  ( (
ph  /\  D  =/=  T )  ->  ( ( S  .\/  T )  ./\  ( P  .\/  Q ) )  =/=  T )
18 biid 251 . . . 4  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Z  e.  O  /\  Y  e.  O )  /\  ( ( -.  C  .<_  ( S  .\/  T
)  /\  -.  C  .<_  ( T  .\/  U
)  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( -.  C  .<_  ( P 
.\/  Q )  /\  -.  C  .<_  ( Q 
.\/  R )  /\  -.  C  .<_  ( R 
.\/  P ) )  /\  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T 
.\/  Q )  /\  C  .<_  ( U  .\/  R ) ) ) )  <-> 
( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Z  e.  O  /\  Y  e.  O )  /\  ( ( -.  C  .<_  ( S  .\/  T
)  /\  -.  C  .<_  ( T  .\/  U
)  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( -.  C  .<_  ( P 
.\/  Q )  /\  -.  C  .<_  ( Q 
.\/  R )  /\  -.  C  .<_  ( R 
.\/  P ) )  /\  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T 
.\/  Q )  /\  C  .<_  ( U  .\/  R ) ) ) ) )
19 dalem3.o . . . 4  |-  O  =  ( LPlanes `  K )
20 dalem3.z . . . 4  |-  Z  =  ( ( S  .\/  T )  .\/  U )
21 dalem3.y . . . 4  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
22 eqid 2622 . . . 4  |-  ( ( S  .\/  T ) 
./\  ( P  .\/  Q ) )  =  ( ( S  .\/  T
)  ./\  ( P  .\/  Q ) )
23 eqid 2622 . . . 4  |-  ( ( T  .\/  U ) 
./\  ( Q  .\/  R ) )  =  ( ( T  .\/  U
)  ./\  ( Q  .\/  R ) )
2418, 2, 3, 4, 12, 19, 20, 21, 22, 23dalem3 34950 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Z  e.  O  /\  Y  e.  O )  /\  ( ( -.  C  .<_  ( S  .\/  T
)  /\  -.  C  .<_  ( T  .\/  U
)  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( -.  C  .<_  ( P 
.\/  Q )  /\  -.  C  .<_  ( Q 
.\/  R )  /\  -.  C  .<_  ( R 
.\/  P ) )  /\  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T 
.\/  Q )  /\  C  .<_  ( U  .\/  R ) ) ) )  /\  ( ( S 
.\/  T )  ./\  ( P  .\/  Q ) )  =/=  T )  ->  ( ( S 
.\/  T )  ./\  ( P  .\/  Q ) )  =/=  ( ( T  .\/  U ) 
./\  ( Q  .\/  R ) ) )
256, 17, 24syl2anc 693 . 2  |-  ( (
ph  /\  D  =/=  T )  ->  ( ( S  .\/  T )  ./\  ( P  .\/  Q ) )  =/=  ( ( T  .\/  U ) 
./\  ( Q  .\/  R ) ) )
2615adantr 481 . 2  |-  ( (
ph  /\  D  =/=  T )  ->  D  =  ( ( S  .\/  T )  ./\  ( P  .\/  Q ) ) )
27 dalem3.e . . . 4  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
281dalemkehl 34909 . . . . . 6  |-  ( ph  ->  K  e.  HL )
291dalemqea 34913 . . . . . 6  |-  ( ph  ->  Q  e.  A )
301dalemrea 34914 . . . . . 6  |-  ( ph  ->  R  e.  A )
3111, 3, 4hlatjcl 34653 . . . . . 6  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  ( Q  .\/  R
)  e.  ( Base `  K ) )
3228, 29, 30, 31syl3anc 1326 . . . . 5  |-  ( ph  ->  ( Q  .\/  R
)  e.  ( Base `  K ) )
331, 3, 4dalemtjueb 34933 . . . . 5  |-  ( ph  ->  ( T  .\/  U
)  e.  ( Base `  K ) )
3411, 12latmcom 17075 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Q  .\/  R )  e.  ( Base `  K
)  /\  ( T  .\/  U )  e.  (
Base `  K )
)  ->  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  =  ( ( T  .\/  U ) 
./\  ( Q  .\/  R ) ) )
358, 32, 33, 34syl3anc 1326 . . . 4  |-  ( ph  ->  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  =  ( ( T  .\/  U )  ./\  ( Q  .\/  R ) ) )
3627, 35syl5eq 2668 . . 3  |-  ( ph  ->  E  =  ( ( T  .\/  U ) 
./\  ( Q  .\/  R ) ) )
3736adantr 481 . 2  |-  ( (
ph  /\  D  =/=  T )  ->  E  =  ( ( T  .\/  U )  ./\  ( Q  .\/  R ) ) )
3825, 26, 373netr4d 2871 1  |-  ( (
ph  /\  D  =/=  T )  ->  D  =/=  E )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   Atomscatm 34550   HLchlt 34637   LPlanesclpl 34778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785
This theorem is referenced by:  dalemdnee  34952
  Copyright terms: Public domain W3C validator