Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem3 Structured version   Visualization version   Unicode version

Theorem dalem3 34950
Description: Lemma for dalemdnee 34952. (Contributed by NM, 10-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalemc.l  |-  .<_  =  ( le `  K )
dalemc.j  |-  .\/  =  ( join `  K )
dalemc.a  |-  A  =  ( Atoms `  K )
dalem3.m  |-  ./\  =  ( meet `  K )
dalem3.o  |-  O  =  ( LPlanes `  K )
dalem3.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem3.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem3.d  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
dalem3.e  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
Assertion
Ref Expression
dalem3  |-  ( (
ph  /\  D  =/=  Q )  ->  D  =/=  E )

Proof of Theorem dalem3
StepHypRef Expression
1 dalema.ph . . . . 5  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
21dalemkehl 34909 . . . 4  |-  ( ph  ->  K  e.  HL )
31dalempea 34912 . . . 4  |-  ( ph  ->  P  e.  A )
41dalemqea 34913 . . . 4  |-  ( ph  ->  Q  e.  A )
51dalemrea 34914 . . . 4  |-  ( ph  ->  R  e.  A )
61dalemyeo 34918 . . . 4  |-  ( ph  ->  Y  e.  O )
7 dalemc.l . . . . 5  |-  .<_  =  ( le `  K )
8 dalemc.j . . . . 5  |-  .\/  =  ( join `  K )
9 dalemc.a . . . . 5  |-  A  =  ( Atoms `  K )
10 dalem3.o . . . . 5  |-  O  =  ( LPlanes `  K )
11 dalem3.y . . . . 5  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
127, 8, 9, 10, 11lplnric 34838 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  Y  e.  O )  ->  -.  R  .<_  ( P  .\/  Q ) )
132, 3, 4, 5, 6, 12syl131anc 1339 . . 3  |-  ( ph  ->  -.  R  .<_  ( P 
.\/  Q ) )
1413adantr 481 . 2  |-  ( (
ph  /\  D  =/=  Q )  ->  -.  R  .<_  ( P  .\/  Q
) )
15 dalem3.e . . . . . . 7  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
161dalemkelat 34910 . . . . . . . 8  |-  ( ph  ->  K  e.  Lat )
17 eqid 2622 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
1817, 8, 9hlatjcl 34653 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  ( Q  .\/  R
)  e.  ( Base `  K ) )
192, 4, 5, 18syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( Q  .\/  R
)  e.  ( Base `  K ) )
201, 8, 9dalemtjueb 34933 . . . . . . . 8  |-  ( ph  ->  ( T  .\/  U
)  e.  ( Base `  K ) )
21 dalem3.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
2217, 7, 21latmle1 17076 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( Q  .\/  R )  e.  ( Base `  K
)  /\  ( T  .\/  U )  e.  (
Base `  K )
)  ->  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  .<_  ( Q  .\/  R ) )
2316, 19, 20, 22syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  .<_  ( Q  .\/  R ) )
2415, 23syl5eqbr 4688 . . . . . 6  |-  ( ph  ->  E  .<_  ( Q  .\/  R ) )
25 breq1 4656 . . . . . 6  |-  ( D  =  E  ->  ( D  .<_  ( Q  .\/  R )  <->  E  .<_  ( Q 
.\/  R ) ) )
2624, 25syl5ibrcom 237 . . . . 5  |-  ( ph  ->  ( D  =  E  ->  D  .<_  ( Q 
.\/  R ) ) )
2726adantr 481 . . . 4  |-  ( (
ph  /\  D  =/=  Q )  ->  ( D  =  E  ->  D  .<_  ( Q  .\/  R ) ) )
282adantr 481 . . . . 5  |-  ( (
ph  /\  D  =/=  Q )  ->  K  e.  HL )
29 dalem3.z . . . . . . 7  |-  Z  =  ( ( S  .\/  T )  .\/  U )
30 dalem3.d . . . . . . 7  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
311, 7, 8, 9, 21, 10, 11, 29, 30dalemdea 34948 . . . . . 6  |-  ( ph  ->  D  e.  A )
3231adantr 481 . . . . 5  |-  ( (
ph  /\  D  =/=  Q )  ->  D  e.  A )
335adantr 481 . . . . 5  |-  ( (
ph  /\  D  =/=  Q )  ->  R  e.  A )
344adantr 481 . . . . 5  |-  ( (
ph  /\  D  =/=  Q )  ->  Q  e.  A )
35 simpr 477 . . . . 5  |-  ( (
ph  /\  D  =/=  Q )  ->  D  =/=  Q )
367, 8, 9hlatexch1 34681 . . . . 5  |-  ( ( K  e.  HL  /\  ( D  e.  A  /\  R  e.  A  /\  Q  e.  A
)  /\  D  =/=  Q )  ->  ( D  .<_  ( Q  .\/  R
)  ->  R  .<_  ( Q  .\/  D ) ) )
3728, 32, 33, 34, 35, 36syl131anc 1339 . . . 4  |-  ( (
ph  /\  D  =/=  Q )  ->  ( D  .<_  ( Q  .\/  R
)  ->  R  .<_  ( Q  .\/  D ) ) )
387, 8, 9hlatlej2 34662 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  Q  .<_  ( P  .\/  Q ) )
392, 3, 4, 38syl3anc 1326 . . . . . . 7  |-  ( ph  ->  Q  .<_  ( P  .\/  Q ) )
401, 8, 9dalempjqeb 34931 . . . . . . . . 9  |-  ( ph  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
411, 8, 9dalemsjteb 34932 . . . . . . . . 9  |-  ( ph  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
4217, 7, 21latmle1 17076 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  ( S  .\/  T )  e.  (
Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( P  .\/  Q ) )
4316, 40, 41, 42syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( P  .\/  Q ) )
4430, 43syl5eqbr 4688 . . . . . . 7  |-  ( ph  ->  D  .<_  ( P  .\/  Q ) )
451, 9dalemqeb 34926 . . . . . . . 8  |-  ( ph  ->  Q  e.  ( Base `  K ) )
4617, 9atbase 34576 . . . . . . . . 9  |-  ( D  e.  A  ->  D  e.  ( Base `  K
) )
4731, 46syl 17 . . . . . . . 8  |-  ( ph  ->  D  e.  ( Base `  K ) )
4817, 7, 8latjle12 17062 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  D  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) ) )  -> 
( ( Q  .<_  ( P  .\/  Q )  /\  D  .<_  ( P 
.\/  Q ) )  <-> 
( Q  .\/  D
)  .<_  ( P  .\/  Q ) ) )
4916, 45, 47, 40, 48syl13anc 1328 . . . . . . 7  |-  ( ph  ->  ( ( Q  .<_  ( P  .\/  Q )  /\  D  .<_  ( P 
.\/  Q ) )  <-> 
( Q  .\/  D
)  .<_  ( P  .\/  Q ) ) )
5039, 44, 49mpbi2and 956 . . . . . 6  |-  ( ph  ->  ( Q  .\/  D
)  .<_  ( P  .\/  Q ) )
511, 9dalemreb 34927 . . . . . . 7  |-  ( ph  ->  R  e.  ( Base `  K ) )
5217, 8, 9hlatjcl 34653 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  D  e.  A )  ->  ( Q  .\/  D
)  e.  ( Base `  K ) )
532, 4, 31, 52syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( Q  .\/  D
)  e.  ( Base `  K ) )
5417, 7lattr 17056 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( R  e.  ( Base `  K )  /\  ( Q  .\/  D )  e.  ( Base `  K
)  /\  ( P  .\/  Q )  e.  (
Base `  K )
) )  ->  (
( R  .<_  ( Q 
.\/  D )  /\  ( Q  .\/  D ) 
.<_  ( P  .\/  Q
) )  ->  R  .<_  ( P  .\/  Q
) ) )
5516, 51, 53, 40, 54syl13anc 1328 . . . . . 6  |-  ( ph  ->  ( ( R  .<_  ( Q  .\/  D )  /\  ( Q  .\/  D )  .<_  ( P  .\/  Q ) )  ->  R  .<_  ( P  .\/  Q ) ) )
5650, 55mpan2d 710 . . . . 5  |-  ( ph  ->  ( R  .<_  ( Q 
.\/  D )  ->  R  .<_  ( P  .\/  Q ) ) )
5756adantr 481 . . . 4  |-  ( (
ph  /\  D  =/=  Q )  ->  ( R  .<_  ( Q  .\/  D
)  ->  R  .<_  ( P  .\/  Q ) ) )
5827, 37, 573syld 60 . . 3  |-  ( (
ph  /\  D  =/=  Q )  ->  ( D  =  E  ->  R  .<_  ( P  .\/  Q ) ) )
5958necon3bd 2808 . 2  |-  ( (
ph  /\  D  =/=  Q )  ->  ( -.  R  .<_  ( P  .\/  Q )  ->  D  =/=  E ) )
6014, 59mpd 15 1  |-  ( (
ph  /\  D  =/=  Q )  ->  D  =/=  E )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   Atomscatm 34550   HLchlt 34637   LPlanesclpl 34778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785
This theorem is referenced by:  dalem4  34951  dalemdnee  34952
  Copyright terms: Public domain W3C validator