Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem56 Structured version   Visualization version   Unicode version

Theorem dalem56 35014
Description: Lemma for dath 35022. Analogue of dalem55 35013 for line  S T. (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem54.m  |-  ./\  =  ( meet `  K )
dalem54.o  |-  O  =  ( LPlanes `  K )
dalem54.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem54.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem54.g  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
dalem54.h  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
dalem54.i  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
dalem54.b1  |-  B  =  ( ( ( G 
.\/  H )  .\/  I )  ./\  Y
)
Assertion
Ref Expression
dalem56  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  ( S  .\/  T ) )  =  ( ( G  .\/  H )  ./\  B )
)

Proof of Theorem dalem56
StepHypRef Expression
1 dalem.ph . . . . 5  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
2 dalem.l . . . . 5  |-  .<_  =  ( le `  K )
3 dalem.j . . . . 5  |-  .\/  =  ( join `  K )
4 dalem.a . . . . 5  |-  A  =  ( Atoms `  K )
51, 2, 3, 4dalemswapyz 34942 . . . 4  |-  ( ph  ->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Z  e.  O  /\  Y  e.  O )  /\  ( ( -.  C  .<_  ( S  .\/  T
)  /\  -.  C  .<_  ( T  .\/  U
)  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( -.  C  .<_  ( P 
.\/  Q )  /\  -.  C  .<_  ( Q 
.\/  R )  /\  -.  C  .<_  ( R 
.\/  P ) )  /\  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T 
.\/  Q )  /\  C  .<_  ( U  .\/  R ) ) ) ) )
653ad2ant1 1082 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Z  e.  O  /\  Y  e.  O )  /\  ( ( -.  C  .<_  ( S  .\/  T
)  /\  -.  C  .<_  ( T  .\/  U
)  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( -.  C  .<_  ( P 
.\/  Q )  /\  -.  C  .<_  ( Q 
.\/  R )  /\  -.  C  .<_  ( R 
.\/  P ) )  /\  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T 
.\/  Q )  /\  C  .<_  ( U  .\/  R ) ) ) ) )
7 simp2 1062 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  Y  =  Z )
87eqcomd 2628 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  Z  =  Y )
9 dalem.ps . . . 4  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
101, 2, 3, 4, 9dalemswapyzps 34976 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( d  e.  A  /\  c  e.  A )  /\  -.  d  .<_  Z  /\  (
c  =/=  d  /\  -.  c  .<_  Z  /\  C  .<_  ( d  .\/  c ) ) ) )
11 biid 251 . . . 4  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Z  e.  O  /\  Y  e.  O )  /\  ( ( -.  C  .<_  ( S  .\/  T
)  /\  -.  C  .<_  ( T  .\/  U
)  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( -.  C  .<_  ( P 
.\/  Q )  /\  -.  C  .<_  ( Q 
.\/  R )  /\  -.  C  .<_  ( R 
.\/  P ) )  /\  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T 
.\/  Q )  /\  C  .<_  ( U  .\/  R ) ) ) )  <-> 
( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Z  e.  O  /\  Y  e.  O )  /\  ( ( -.  C  .<_  ( S  .\/  T
)  /\  -.  C  .<_  ( T  .\/  U
)  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( -.  C  .<_  ( P 
.\/  Q )  /\  -.  C  .<_  ( Q 
.\/  R )  /\  -.  C  .<_  ( R 
.\/  P ) )  /\  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T 
.\/  Q )  /\  C  .<_  ( U  .\/  R ) ) ) ) )
12 biid 251 . . . 4  |-  ( ( ( d  e.  A  /\  c  e.  A
)  /\  -.  d  .<_  Z  /\  ( c  =/=  d  /\  -.  c  .<_  Z  /\  C  .<_  ( d  .\/  c
) ) )  <->  ( (
d  e.  A  /\  c  e.  A )  /\  -.  d  .<_  Z  /\  ( c  =/=  d  /\  -.  c  .<_  Z  /\  C  .<_  ( d  .\/  c ) ) ) )
13 dalem54.m . . . 4  |-  ./\  =  ( meet `  K )
14 dalem54.o . . . 4  |-  O  =  ( LPlanes `  K )
15 dalem54.z . . . 4  |-  Z  =  ( ( S  .\/  T )  .\/  U )
16 dalem54.y . . . 4  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
17 eqid 2622 . . . 4  |-  ( ( d  .\/  S ) 
./\  ( c  .\/  P ) )  =  ( ( d  .\/  S
)  ./\  ( c  .\/  P ) )
18 eqid 2622 . . . 4  |-  ( ( d  .\/  T ) 
./\  ( c  .\/  Q ) )  =  ( ( d  .\/  T
)  ./\  ( c  .\/  Q ) )
19 eqid 2622 . . . 4  |-  ( ( d  .\/  U ) 
./\  ( c  .\/  R ) )  =  ( ( d  .\/  U
)  ./\  ( c  .\/  R ) )
20 eqid 2622 . . . 4  |-  ( ( ( ( ( d 
.\/  S )  ./\  ( c  .\/  P
) )  .\/  (
( d  .\/  T
)  ./\  ( c  .\/  Q ) ) ) 
.\/  ( ( d 
.\/  U )  ./\  ( c  .\/  R
) ) )  ./\  Z )  =  ( ( ( ( ( d 
.\/  S )  ./\  ( c  .\/  P
) )  .\/  (
( d  .\/  T
)  ./\  ( c  .\/  Q ) ) ) 
.\/  ( ( d 
.\/  U )  ./\  ( c  .\/  R
) ) )  ./\  Z )
2111, 2, 3, 4, 12, 13, 14, 15, 16, 17, 18, 19, 20dalem55 35013 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Z  e.  O  /\  Y  e.  O )  /\  ( ( -.  C  .<_  ( S  .\/  T
)  /\  -.  C  .<_  ( T  .\/  U
)  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( -.  C  .<_  ( P 
.\/  Q )  /\  -.  C  .<_  ( Q 
.\/  R )  /\  -.  C  .<_  ( R 
.\/  P ) )  /\  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T 
.\/  Q )  /\  C  .<_  ( U  .\/  R ) ) ) )  /\  Z  =  Y  /\  ( ( d  e.  A  /\  c  e.  A )  /\  -.  d  .<_  Z  /\  (
c  =/=  d  /\  -.  c  .<_  Z  /\  C  .<_  ( d  .\/  c ) ) ) )  ->  ( (
( ( d  .\/  S )  ./\  ( c  .\/  P ) )  .\/  ( ( d  .\/  T )  ./\  ( c  .\/  Q ) ) ) 
./\  ( S  .\/  T ) )  =  ( ( ( ( d 
.\/  S )  ./\  ( c  .\/  P
) )  .\/  (
( d  .\/  T
)  ./\  ( c  .\/  Q ) ) ) 
./\  ( ( ( ( ( d  .\/  S )  ./\  ( c  .\/  P ) )  .\/  ( ( d  .\/  T )  ./\  ( c  .\/  Q ) ) ) 
.\/  ( ( d 
.\/  U )  ./\  ( c  .\/  R
) ) )  ./\  Z ) ) )
226, 8, 10, 21syl3anc 1326 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( ( d  .\/  S ) 
./\  ( c  .\/  P ) )  .\/  (
( d  .\/  T
)  ./\  ( c  .\/  Q ) ) ) 
./\  ( S  .\/  T ) )  =  ( ( ( ( d 
.\/  S )  ./\  ( c  .\/  P
) )  .\/  (
( d  .\/  T
)  ./\  ( c  .\/  Q ) ) ) 
./\  ( ( ( ( ( d  .\/  S )  ./\  ( c  .\/  P ) )  .\/  ( ( d  .\/  T )  ./\  ( c  .\/  Q ) ) ) 
.\/  ( ( d 
.\/  U )  ./\  ( c  .\/  R
) ) )  ./\  Z ) ) )
23 dalem54.g . . . . 5  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
241dalemkelat 34910 . . . . . . 7  |-  ( ph  ->  K  e.  Lat )
25243ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  Lat )
261dalemkehl 34909 . . . . . . . 8  |-  ( ph  ->  K  e.  HL )
27263ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  HL )
289dalemccea 34969 . . . . . . . 8  |-  ( ps 
->  c  e.  A
)
29283ad2ant3 1084 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  e.  A )
301dalempea 34912 . . . . . . . 8  |-  ( ph  ->  P  e.  A )
31303ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  P  e.  A )
32 eqid 2622 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
3332, 3, 4hlatjcl 34653 . . . . . . 7  |-  ( ( K  e.  HL  /\  c  e.  A  /\  P  e.  A )  ->  ( c  .\/  P
)  e.  ( Base `  K ) )
3427, 29, 31, 33syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  P
)  e.  ( Base `  K ) )
359dalemddea 34970 . . . . . . . 8  |-  ( ps 
->  d  e.  A
)
36353ad2ant3 1084 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
d  e.  A )
371dalemsea 34915 . . . . . . . 8  |-  ( ph  ->  S  e.  A )
38373ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  S  e.  A )
3932, 3, 4hlatjcl 34653 . . . . . . 7  |-  ( ( K  e.  HL  /\  d  e.  A  /\  S  e.  A )  ->  ( d  .\/  S
)  e.  ( Base `  K ) )
4027, 36, 38, 39syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( d  .\/  S
)  e.  ( Base `  K ) )
4132, 13latmcom 17075 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( c  .\/  P
)  e.  ( Base `  K )  /\  (
d  .\/  S )  e.  ( Base `  K
) )  ->  (
( c  .\/  P
)  ./\  ( d  .\/  S ) )  =  ( ( d  .\/  S )  ./\  ( c  .\/  P ) ) )
4225, 34, 40, 41syl3anc 1326 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  P )  ./\  ( d  .\/  S ) )  =  ( ( d  .\/  S )  ./\  ( c  .\/  P ) ) )
4323, 42syl5eq 2668 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  =  ( (
d  .\/  S )  ./\  ( c  .\/  P
) ) )
44 dalem54.h . . . . 5  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
451dalemqea 34913 . . . . . . . 8  |-  ( ph  ->  Q  e.  A )
46453ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  Q  e.  A )
4732, 3, 4hlatjcl 34653 . . . . . . 7  |-  ( ( K  e.  HL  /\  c  e.  A  /\  Q  e.  A )  ->  ( c  .\/  Q
)  e.  ( Base `  K ) )
4827, 29, 46, 47syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  Q
)  e.  ( Base `  K ) )
491dalemtea 34916 . . . . . . . 8  |-  ( ph  ->  T  e.  A )
50493ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  T  e.  A )
5132, 3, 4hlatjcl 34653 . . . . . . 7  |-  ( ( K  e.  HL  /\  d  e.  A  /\  T  e.  A )  ->  ( d  .\/  T
)  e.  ( Base `  K ) )
5227, 36, 50, 51syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( d  .\/  T
)  e.  ( Base `  K ) )
5332, 13latmcom 17075 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( c  .\/  Q
)  e.  ( Base `  K )  /\  (
d  .\/  T )  e.  ( Base `  K
) )  ->  (
( c  .\/  Q
)  ./\  ( d  .\/  T ) )  =  ( ( d  .\/  T )  ./\  ( c  .\/  Q ) ) )
5425, 48, 52, 53syl3anc 1326 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  Q )  ./\  ( d  .\/  T ) )  =  ( ( d  .\/  T )  ./\  ( c  .\/  Q ) ) )
5544, 54syl5eq 2668 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  H  =  ( (
d  .\/  T )  ./\  ( c  .\/  Q
) ) )
5643, 55oveq12d 6668 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( G  .\/  H
)  =  ( ( ( d  .\/  S
)  ./\  ( c  .\/  P ) )  .\/  ( ( d  .\/  T )  ./\  ( c  .\/  Q ) ) ) )
5756oveq1d 6665 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  ( S  .\/  T ) )  =  ( ( ( ( d  .\/  S ) 
./\  ( c  .\/  P ) )  .\/  (
( d  .\/  T
)  ./\  ( c  .\/  Q ) ) ) 
./\  ( S  .\/  T ) ) )
58 dalem54.b1 . . . 4  |-  B  =  ( ( ( G 
.\/  H )  .\/  I )  ./\  Y
)
59 dalem54.i . . . . . . 7  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
601dalemrea 34914 . . . . . . . . . 10  |-  ( ph  ->  R  e.  A )
61603ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  R  e.  A )
6232, 3, 4hlatjcl 34653 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  c  e.  A  /\  R  e.  A )  ->  ( c  .\/  R
)  e.  ( Base `  K ) )
6327, 29, 61, 62syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  R
)  e.  ( Base `  K ) )
641dalemuea 34917 . . . . . . . . . 10  |-  ( ph  ->  U  e.  A )
65643ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  U  e.  A )
6632, 3, 4hlatjcl 34653 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  d  e.  A  /\  U  e.  A )  ->  ( d  .\/  U
)  e.  ( Base `  K ) )
6727, 36, 65, 66syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( d  .\/  U
)  e.  ( Base `  K ) )
6832, 13latmcom 17075 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( c  .\/  R
)  e.  ( Base `  K )  /\  (
d  .\/  U )  e.  ( Base `  K
) )  ->  (
( c  .\/  R
)  ./\  ( d  .\/  U ) )  =  ( ( d  .\/  U )  ./\  ( c  .\/  R ) ) )
6925, 63, 67, 68syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  R )  ./\  ( d  .\/  U ) )  =  ( ( d  .\/  U )  ./\  ( c  .\/  R ) ) )
7059, 69syl5eq 2668 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  I  =  ( (
d  .\/  U )  ./\  ( c  .\/  R
) ) )
7156, 70oveq12d 6668 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  .\/  I )  =  ( ( ( ( d  .\/  S
)  ./\  ( c  .\/  P ) )  .\/  ( ( d  .\/  T )  ./\  ( c  .\/  Q ) ) ) 
.\/  ( ( d 
.\/  U )  ./\  ( c  .\/  R
) ) ) )
7271, 7oveq12d 6668 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( G 
.\/  H )  .\/  I )  ./\  Y
)  =  ( ( ( ( ( d 
.\/  S )  ./\  ( c  .\/  P
) )  .\/  (
( d  .\/  T
)  ./\  ( c  .\/  Q ) ) ) 
.\/  ( ( d 
.\/  U )  ./\  ( c  .\/  R
) ) )  ./\  Z ) )
7358, 72syl5eq 2668 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  B  =  ( (
( ( ( d 
.\/  S )  ./\  ( c  .\/  P
) )  .\/  (
( d  .\/  T
)  ./\  ( c  .\/  Q ) ) ) 
.\/  ( ( d 
.\/  U )  ./\  ( c  .\/  R
) ) )  ./\  Z ) )
7456, 73oveq12d 6668 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  B )  =  ( ( ( ( d  .\/  S
)  ./\  ( c  .\/  P ) )  .\/  ( ( d  .\/  T )  ./\  ( c  .\/  Q ) ) ) 
./\  ( ( ( ( ( d  .\/  S )  ./\  ( c  .\/  P ) )  .\/  ( ( d  .\/  T )  ./\  ( c  .\/  Q ) ) ) 
.\/  ( ( d 
.\/  U )  ./\  ( c  .\/  R
) ) )  ./\  Z ) ) )
7522, 57, 743eqtr4d 2666 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  ( S  .\/  T ) )  =  ( ( G  .\/  H )  ./\  B )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   Atomscatm 34550   HLchlt 34637   LPlanesclpl 34778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786
This theorem is referenced by:  dalem57  35015
  Copyright terms: Public domain W3C validator