Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem55 Structured version   Visualization version   Unicode version

Theorem dalem55 35013
Description: Lemma for dath 35022. Lines  G H and  P Q intersect at the auxiliary line  B (later shown to be an axis of perspectivity; see dalem60 35018). (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem54.m  |-  ./\  =  ( meet `  K )
dalem54.o  |-  O  =  ( LPlanes `  K )
dalem54.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem54.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem54.g  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
dalem54.h  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
dalem54.i  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
dalem54.b1  |-  B  =  ( ( ( G 
.\/  H )  .\/  I )  ./\  Y
)
Assertion
Ref Expression
dalem55  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  =  ( ( G  .\/  H )  ./\  B )
)

Proof of Theorem dalem55
StepHypRef Expression
1 dalem.ph . . . . . 6  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
21dalemkelat 34910 . . . . 5  |-  ( ph  ->  K  e.  Lat )
323ad2ant1 1082 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  Lat )
41dalemkehl 34909 . . . . . 6  |-  ( ph  ->  K  e.  HL )
543ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  HL )
6 dalem.l . . . . . 6  |-  .<_  =  ( le `  K )
7 dalem.j . . . . . 6  |-  .\/  =  ( join `  K )
8 dalem.a . . . . . 6  |-  A  =  ( Atoms `  K )
9 dalem.ps . . . . . 6  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
10 dalem54.m . . . . . 6  |-  ./\  =  ( meet `  K )
11 dalem54.o . . . . . 6  |-  O  =  ( LPlanes `  K )
12 dalem54.y . . . . . 6  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
13 dalem54.z . . . . . 6  |-  Z  =  ( ( S  .\/  T )  .\/  U )
14 dalem54.g . . . . . 6  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
151, 6, 7, 8, 9, 10, 11, 12, 13, 14dalem23 34982 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  e.  A )
16 dalem54.h . . . . . 6  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
171, 6, 7, 8, 9, 10, 11, 12, 13, 16dalem29 34987 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  H  e.  A )
18 eqid 2622 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
1918, 7, 8hlatjcl 34653 . . . . 5  |-  ( ( K  e.  HL  /\  G  e.  A  /\  H  e.  A )  ->  ( G  .\/  H
)  e.  ( Base `  K ) )
205, 15, 17, 19syl3anc 1326 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( G  .\/  H
)  e.  ( Base `  K ) )
211, 7, 8dalempjqeb 34931 . . . . 5  |-  ( ph  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
22213ad2ant1 1082 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
2318, 6, 10latmle1 17076 . . . 4  |-  ( ( K  e.  Lat  /\  ( G  .\/  H )  e.  ( Base `  K
)  /\  ( P  .\/  Q )  e.  (
Base `  K )
)  ->  ( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  .<_  ( G  .\/  H ) )
243, 20, 22, 23syl3anc 1326 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  .<_  ( G  .\/  H ) )
25 dalem54.i . . . . . . . 8  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
261, 6, 7, 8, 9, 10, 11, 12, 13, 25dalem34 34992 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  I  e.  A )
2718, 8atbase 34576 . . . . . . 7  |-  ( I  e.  A  ->  I  e.  ( Base `  K
) )
2826, 27syl 17 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  I  e.  ( Base `  K ) )
2918, 6, 7latlej1 17060 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( G  .\/  H )  e.  ( Base `  K
)  /\  I  e.  ( Base `  K )
)  ->  ( G  .\/  H )  .<_  ( ( G  .\/  H ) 
.\/  I ) )
303, 20, 28, 29syl3anc 1326 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( G  .\/  H
)  .<_  ( ( G 
.\/  H )  .\/  I ) )
311, 8dalemreb 34927 . . . . . . . 8  |-  ( ph  ->  R  e.  ( Base `  K ) )
3218, 6, 7latlej1 17060 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  R  e.  ( Base `  K )
)  ->  ( P  .\/  Q )  .<_  ( ( P  .\/  Q ) 
.\/  R ) )
332, 21, 31, 32syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( P  .\/  Q
)  .<_  ( ( P 
.\/  Q )  .\/  R ) )
3433, 12syl6breqr 4695 . . . . . 6  |-  ( ph  ->  ( P  .\/  Q
)  .<_  Y )
35343ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( P  .\/  Q
)  .<_  Y )
361, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 25dalem42 35000 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  .\/  I )  e.  O )
3718, 11lplnbase 34820 . . . . . . 7  |-  ( ( ( G  .\/  H
)  .\/  I )  e.  O  ->  ( ( G  .\/  H ) 
.\/  I )  e.  ( Base `  K
) )
3836, 37syl 17 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  .\/  I )  e.  ( Base `  K
) )
391, 11dalemyeb 34935 . . . . . . 7  |-  ( ph  ->  Y  e.  ( Base `  K ) )
40393ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  Y  e.  ( Base `  K ) )
4118, 6, 10latmlem12 17083 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( G  .\/  H )  e.  ( Base `  K )  /\  (
( G  .\/  H
)  .\/  I )  e.  ( Base `  K
) )  /\  (
( P  .\/  Q
)  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) ) )  -> 
( ( ( G 
.\/  H )  .<_  ( ( G  .\/  H )  .\/  I )  /\  ( P  .\/  Q )  .<_  Y )  ->  ( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  .<_  ( ( ( G 
.\/  H )  .\/  I )  ./\  Y
) ) )
423, 20, 38, 22, 40, 41syl122anc 1335 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( G 
.\/  H )  .<_  ( ( G  .\/  H )  .\/  I )  /\  ( P  .\/  Q )  .<_  Y )  ->  ( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  .<_  ( ( ( G 
.\/  H )  .\/  I )  ./\  Y
) ) )
4330, 35, 42mp2and 715 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  .<_  ( ( ( G 
.\/  H )  .\/  I )  ./\  Y
) )
44 dalem54.b1 . . . 4  |-  B  =  ( ( ( G 
.\/  H )  .\/  I )  ./\  Y
)
4543, 44syl6breqr 4695 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  .<_  B )
4618, 10latmcl 17052 . . . . 5  |-  ( ( K  e.  Lat  /\  ( G  .\/  H )  e.  ( Base `  K
)  /\  ( P  .\/  Q )  e.  (
Base `  K )
)  ->  ( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  e.  ( Base `  K ) )
473, 20, 22, 46syl3anc 1326 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  e.  ( Base `  K
) )
48 eqid 2622 . . . . . 6  |-  ( LLines `  K )  =  (
LLines `  K )
491, 6, 7, 8, 9, 10, 48, 11, 12, 13, 14, 16, 25, 44dalem53 35011 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  B  e.  ( LLines `  K ) )
5018, 48llnbase 34795 . . . . 5  |-  ( B  e.  ( LLines `  K
)  ->  B  e.  ( Base `  K )
)
5149, 50syl 17 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  B  e.  ( Base `  K ) )
5218, 6, 10latlem12 17078 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( ( G 
.\/  H )  ./\  ( P  .\/  Q ) )  e.  ( Base `  K )  /\  ( G  .\/  H )  e.  ( Base `  K
)  /\  B  e.  ( Base `  K )
) )  ->  (
( ( ( G 
.\/  H )  ./\  ( P  .\/  Q ) )  .<_  ( G  .\/  H )  /\  (
( G  .\/  H
)  ./\  ( P  .\/  Q ) )  .<_  B )  <->  ( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  .<_  ( ( G  .\/  H )  ./\  B ) ) )
533, 47, 20, 51, 52syl13anc 1328 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( ( G  .\/  H ) 
./\  ( P  .\/  Q ) )  .<_  ( G 
.\/  H )  /\  ( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  .<_  B )  <->  ( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  .<_  ( ( G  .\/  H )  ./\  B ) ) )
5424, 45, 53mpbi2and 956 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  .<_  ( ( G  .\/  H )  ./\  B )
)
55 hlatl 34647 . . . 4  |-  ( K  e.  HL  ->  K  e.  AtLat )
565, 55syl 17 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  AtLat )
571, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 25dalem52 35010 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  e.  A )
581, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 25, 44dalem54 35012 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  B )  e.  A )
596, 8atcmp 34598 . . 3  |-  ( ( K  e.  AtLat  /\  (
( G  .\/  H
)  ./\  ( P  .\/  Q ) )  e.  A  /\  ( ( G  .\/  H ) 
./\  B )  e.  A )  ->  (
( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  .<_  ( ( G  .\/  H )  ./\  B )  <->  ( ( G  .\/  H
)  ./\  ( P  .\/  Q ) )  =  ( ( G  .\/  H )  ./\  B )
) )
6056, 57, 58, 59syl3anc 1326 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( G 
.\/  H )  ./\  ( P  .\/  Q ) )  .<_  ( ( G  .\/  H )  ./\  B )  <->  ( ( G 
.\/  H )  ./\  ( P  .\/  Q ) )  =  ( ( G  .\/  H ) 
./\  B ) ) )
6154, 60mpbid 222 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  =  ( ( G  .\/  H )  ./\  B )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   Atomscatm 34550   AtLatcal 34551   HLchlt 34637   LLinesclln 34777   LPlanesclpl 34778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786
This theorem is referenced by:  dalem56  35014  dalem57  35015
  Copyright terms: Public domain W3C validator