Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem6 Structured version   Visualization version   Unicode version

Theorem dfon2lem6 31693
Description: Lemma for dfon2 31697. A transitive class of sets satisfying the new definition satisfies the new definition. (Contributed by Scott Fenton, 25-Feb-2011.)
Assertion
Ref Expression
dfon2lem6  |-  ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  ->  A. y ( ( y 
C.  S  /\  Tr  y )  ->  y  e.  S ) )
Distinct variable group:    x, S, y, z

Proof of Theorem dfon2lem6
Dummy variables  w  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssss 3702 . . . . . . . . . . . . . . . . 17  |-  ( y 
C.  S  ->  y  C_  S )
2 ssralv 3666 . . . . . . . . . . . . . . . . 17  |-  ( y 
C_  S  ->  ( A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x )  ->  A. x  e.  y  A. z
( ( z  C.  x  /\  Tr  z )  ->  z  e.  x
) ) )
31, 2syl 17 . . . . . . . . . . . . . . . 16  |-  ( y 
C.  S  ->  ( A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x )  ->  A. x  e.  y  A. z
( ( z  C.  x  /\  Tr  z )  ->  z  e.  x
) ) )
43impcom 446 . . . . . . . . . . . . . . 15  |-  ( ( A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x )  /\  y  C.  S )  ->  A. x  e.  y  A. z
( ( z  C.  x  /\  Tr  z )  ->  z  e.  x
) )
54adantrr 753 . . . . . . . . . . . . . 14  |-  ( ( A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x )  /\  (
y  C.  S  /\  Tr  y ) )  ->  A. x  e.  y  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )
65ad2ant2lr 784 . . . . . . . . . . . . 13  |-  ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) ) )  ->  A. x  e.  y  A. z
( ( z  C.  x  /\  Tr  z )  ->  z  e.  x
) )
7 psseq2 3695 . . . . . . . . . . . . . . . . 17  |-  ( x  =  w  ->  (
z  C.  x  <->  z  C.  w
) )
87anbi1d 741 . . . . . . . . . . . . . . . 16  |-  ( x  =  w  ->  (
( z  C.  x  /\  Tr  z )  <->  ( z  C.  w  /\  Tr  z
) ) )
9 elequ2 2004 . . . . . . . . . . . . . . . 16  |-  ( x  =  w  ->  (
z  e.  x  <->  z  e.  w ) )
108, 9imbi12d 334 . . . . . . . . . . . . . . 15  |-  ( x  =  w  ->  (
( ( z  C.  x  /\  Tr  z )  ->  z  e.  x
)  <->  ( ( z 
C.  w  /\  Tr  z )  ->  z  e.  w ) ) )
1110albidv 1849 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  ( A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x )  <->  A. z
( ( z  C.  w  /\  Tr  z )  ->  z  e.  w
) ) )
1211rspccv 3306 . . . . . . . . . . . . 13  |-  ( A. x  e.  y  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x )  ->  (
w  e.  y  ->  A. z ( ( z 
C.  w  /\  Tr  z )  ->  z  e.  w ) ) )
136, 12syl 17 . . . . . . . . . . . 12  |-  ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) ) )  ->  (
w  e.  y  ->  A. z ( ( z 
C.  w  /\  Tr  z )  ->  z  e.  w ) ) )
1413imp 445 . . . . . . . . . . 11  |-  ( ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) ) )  /\  w  e.  y )  ->  A. z
( ( z  C.  w  /\  Tr  z )  ->  z  e.  w
) )
15 eldifi 3732 . . . . . . . . . . . . . . . 16  |-  ( s  e.  ( S  \ 
y )  ->  s  e.  S )
16 psseq2 3695 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  s  ->  (
z  C.  x  <->  z  C.  s
) )
1716anbi1d 741 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  s  ->  (
( z  C.  x  /\  Tr  z )  <->  ( z  C.  s  /\  Tr  z
) ) )
18 elequ2 2004 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  s  ->  (
z  e.  x  <->  z  e.  s ) )
1917, 18imbi12d 334 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  s  ->  (
( ( z  C.  x  /\  Tr  z )  ->  z  e.  x
)  <->  ( ( z 
C.  s  /\  Tr  z )  ->  z  e.  s ) ) )
2019albidv 1849 . . . . . . . . . . . . . . . . 17  |-  ( x  =  s  ->  ( A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x )  <->  A. z
( ( z  C.  s  /\  Tr  z )  ->  z  e.  s ) ) )
2120rspcv 3305 . . . . . . . . . . . . . . . 16  |-  ( s  e.  S  ->  ( A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x )  ->  A. z
( ( z  C.  s  /\  Tr  z )  ->  z  e.  s ) ) )
2215, 21syl 17 . . . . . . . . . . . . . . 15  |-  ( s  e.  ( S  \ 
y )  ->  ( A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x )  ->  A. z
( ( z  C.  s  /\  Tr  z )  ->  z  e.  s ) ) )
23 psseq1 3694 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  t  ->  (
z  C.  s  <->  t  C.  s
) )
24 treq 4758 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  t  ->  ( Tr  z  <->  Tr  t )
)
2523, 24anbi12d 747 . . . . . . . . . . . . . . . . 17  |-  ( z  =  t  ->  (
( z  C.  s  /\  Tr  z )  <->  ( t  C.  s  /\  Tr  t
) ) )
26 elequ1 1997 . . . . . . . . . . . . . . . . 17  |-  ( z  =  t  ->  (
z  e.  s  <->  t  e.  s ) )
2725, 26imbi12d 334 . . . . . . . . . . . . . . . 16  |-  ( z  =  t  ->  (
( ( z  C.  s  /\  Tr  z )  ->  z  e.  s )  <->  ( ( t 
C.  s  /\  Tr  t )  ->  t  e.  s ) ) )
2827cbvalv 2273 . . . . . . . . . . . . . . 15  |-  ( A. z ( ( z 
C.  s  /\  Tr  z )  ->  z  e.  s )  <->  A. t
( ( t  C.  s  /\  Tr  t )  ->  t  e.  s ) )
2922, 28syl6ib 241 . . . . . . . . . . . . . 14  |-  ( s  e.  ( S  \ 
y )  ->  ( A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x )  ->  A. t
( ( t  C.  s  /\  Tr  t )  ->  t  e.  s ) ) )
3029impcom 446 . . . . . . . . . . . . 13  |-  ( ( A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x )  /\  s  e.  ( S  \  y
) )  ->  A. t
( ( t  C.  s  /\  Tr  t )  ->  t  e.  s ) )
3130ad2ant2l 782 . . . . . . . . . . . 12  |-  ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) ) )  ->  A. t
( ( t  C.  s  /\  Tr  t )  ->  t  e.  s ) )
3231adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) ) )  /\  w  e.  y )  ->  A. t
( ( t  C.  s  /\  Tr  t )  ->  t  e.  s ) )
33 vex 3203 . . . . . . . . . . . . 13  |-  w  e. 
_V
34 vex 3203 . . . . . . . . . . . . 13  |-  s  e. 
_V
3533, 34dfon2lem5 31692 . . . . . . . . . . . 12  |-  ( ( A. z ( ( z  C.  w  /\  Tr  z )  ->  z  e.  w )  /\  A. t ( ( t 
C.  s  /\  Tr  t )  ->  t  e.  s ) )  -> 
( w  e.  s  \/  w  =  s  \/  s  e.  w
) )
36 3orrot 1044 . . . . . . . . . . . . . 14  |-  ( ( w  e.  s  \/  w  =  s  \/  s  e.  w )  <-> 
( w  =  s  \/  s  e.  w  \/  w  e.  s
) )
37 3orass 1040 . . . . . . . . . . . . . 14  |-  ( ( w  =  s  \/  s  e.  w  \/  w  e.  s )  <-> 
( w  =  s  \/  ( s  e.  w  \/  w  e.  s ) ) )
3836, 37bitri 264 . . . . . . . . . . . . 13  |-  ( ( w  e.  s  \/  w  =  s  \/  s  e.  w )  <-> 
( w  =  s  \/  ( s  e.  w  \/  w  e.  s ) ) )
39 eleq1a 2696 . . . . . . . . . . . . . . . . . 18  |-  ( s  e.  ( S  \ 
y )  ->  (
w  =  s  ->  w  e.  ( S  \  y ) ) )
40 elndif 3734 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  y  ->  -.  w  e.  ( S  \  y ) )
4139, 40nsyli 155 . . . . . . . . . . . . . . . . 17  |-  ( s  e.  ( S  \ 
y )  ->  (
w  e.  y  ->  -.  w  =  s
) )
4241imp 445 . . . . . . . . . . . . . . . 16  |-  ( ( s  e.  ( S 
\  y )  /\  w  e.  y )  ->  -.  w  =  s )
4342adantll 750 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) )  /\  w  e.  y )  ->  -.  w  =  s )
4443adantll 750 . . . . . . . . . . . . . 14  |-  ( ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) ) )  /\  w  e.  y )  ->  -.  w  =  s )
45 orel1 397 . . . . . . . . . . . . . . 15  |-  ( -.  w  =  s  -> 
( ( w  =  s  \/  ( s  e.  w  \/  w  e.  s ) )  -> 
( s  e.  w  \/  w  e.  s
) ) )
46 trss 4761 . . . . . . . . . . . . . . . . . . . 20  |-  ( Tr  y  ->  ( w  e.  y  ->  w  C_  y ) )
47 eldifn 3733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  e.  ( S  \ 
y )  ->  -.  s  e.  y )
48 ssel 3597 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w 
C_  y  ->  (
s  e.  w  -> 
s  e.  y ) )
4948con3d 148 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w 
C_  y  ->  ( -.  s  e.  y  ->  -.  s  e.  w
) )
5047, 49syl5com 31 . . . . . . . . . . . . . . . . . . . 20  |-  ( s  e.  ( S  \ 
y )  ->  (
w  C_  y  ->  -.  s  e.  w ) )
5146, 50syl9 77 . . . . . . . . . . . . . . . . . . 19  |-  ( Tr  y  ->  ( s  e.  ( S  \  y
)  ->  ( w  e.  y  ->  -.  s  e.  w ) ) )
5251adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  C.  S  /\  Tr  y )  ->  (
s  e.  ( S 
\  y )  -> 
( w  e.  y  ->  -.  s  e.  w ) ) )
5352imp31 448 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) )  /\  w  e.  y )  ->  -.  s  e.  w )
5453adantll 750 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) ) )  /\  w  e.  y )  ->  -.  s  e.  w )
55 orel1 397 . . . . . . . . . . . . . . . 16  |-  ( -.  s  e.  w  -> 
( ( s  e.  w  \/  w  e.  s )  ->  w  e.  s ) )
5654, 55syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) ) )  /\  w  e.  y )  ->  (
( s  e.  w  \/  w  e.  s
)  ->  w  e.  s ) )
5745, 56syl9r 78 . . . . . . . . . . . . . 14  |-  ( ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) ) )  /\  w  e.  y )  ->  ( -.  w  =  s  ->  ( ( w  =  s  \/  ( s  e.  w  \/  w  e.  s ) )  ->  w  e.  s )
) )
5844, 57mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) ) )  /\  w  e.  y )  ->  (
( w  =  s  \/  ( s  e.  w  \/  w  e.  s ) )  ->  w  e.  s )
)
5938, 58syl5bi 232 . . . . . . . . . . . 12  |-  ( ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) ) )  /\  w  e.  y )  ->  (
( w  e.  s  \/  w  =  s  \/  s  e.  w
)  ->  w  e.  s ) )
6035, 59syl5 34 . . . . . . . . . . 11  |-  ( ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) ) )  /\  w  e.  y )  ->  (
( A. z ( ( z  C.  w  /\  Tr  z )  -> 
z  e.  w )  /\  A. t ( ( t  C.  s  /\  Tr  t )  -> 
t  e.  s ) )  ->  w  e.  s ) )
6114, 32, 60mp2and 715 . . . . . . . . . 10  |-  ( ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) ) )  /\  w  e.  y )  ->  w  e.  s )
6261ex 450 . . . . . . . . 9  |-  ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) ) )  ->  (
w  e.  y  ->  w  e.  s )
)
6362ssrdv 3609 . . . . . . . 8  |-  ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) ) )  ->  y  C_  s )
64 dfpss2 3692 . . . . . . . . 9  |-  ( y 
C.  s  <->  ( y  C_  s  /\  -.  y  =  s ) )
65 psseq1 3694 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  y  ->  (
z  C.  s  <->  y  C.  s
) )
66 treq 4758 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  y  ->  ( Tr  z  <->  Tr  y )
)
6765, 66anbi12d 747 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  y  ->  (
( z  C.  s  /\  Tr  z )  <->  ( y  C.  s  /\  Tr  y
) ) )
68 elequ1 1997 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  y  ->  (
z  e.  s  <->  y  e.  s ) )
6967, 68imbi12d 334 . . . . . . . . . . . . . . . . 17  |-  ( z  =  y  ->  (
( ( z  C.  s  /\  Tr  z )  ->  z  e.  s )  <->  ( ( y 
C.  s  /\  Tr  y )  ->  y  e.  s ) ) )
7069spv 2260 . . . . . . . . . . . . . . . 16  |-  ( A. z ( ( z 
C.  s  /\  Tr  z )  ->  z  e.  s )  ->  (
( y  C.  s  /\  Tr  y )  -> 
y  e.  s ) )
7170expd 452 . . . . . . . . . . . . . . 15  |-  ( A. z ( ( z 
C.  s  /\  Tr  z )  ->  z  e.  s )  ->  (
y  C.  s  ->  ( Tr  y  ->  y  e.  s ) ) )
7271com23 86 . . . . . . . . . . . . . 14  |-  ( A. z ( ( z 
C.  s  /\  Tr  z )  ->  z  e.  s )  ->  ( Tr  y  ->  ( y 
C.  s  ->  y  e.  s ) ) )
7322, 72syl6 35 . . . . . . . . . . . . 13  |-  ( s  e.  ( S  \ 
y )  ->  ( A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x )  ->  ( Tr  y  ->  ( y 
C.  s  ->  y  e.  s ) ) ) )
7473com3l 89 . . . . . . . . . . . 12  |-  ( A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x )  ->  ( Tr  y  ->  ( s  e.  ( S  \ 
y )  ->  (
y  C.  s  ->  y  e.  s ) ) ) )
7574adantld 483 . . . . . . . . . . 11  |-  ( A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x )  ->  (
( y  C.  S  /\  Tr  y )  -> 
( s  e.  ( S  \  y )  ->  ( y  C.  s  ->  y  e.  s ) ) ) )
7675adantl 482 . . . . . . . . . 10  |-  ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  -> 
( ( y  C.  S  /\  Tr  y )  ->  ( s  e.  ( S  \  y
)  ->  ( y  C.  s  ->  y  e.  s ) ) ) )
7776imp32 449 . . . . . . . . 9  |-  ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) ) )  ->  (
y  C.  s  ->  y  e.  s ) )
7864, 77syl5bir 233 . . . . . . . 8  |-  ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) ) )  ->  (
( y  C_  s  /\  -.  y  =  s )  ->  y  e.  s ) )
7963, 78mpand 711 . . . . . . 7  |-  ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) ) )  ->  ( -.  y  =  s  ->  y  e.  s ) )
8079orrd 393 . . . . . 6  |-  ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( ( y  C.  S  /\  Tr  y )  /\  s  e.  ( S  \  y ) ) )  ->  (
y  =  s  \/  y  e.  s ) )
8180anassrs 680 . . . . 5  |-  ( ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( y  C.  S  /\  Tr  y ) )  /\  s  e.  ( S  \  y ) )  ->  ( y  =  s  \/  y  e.  s ) )
8281ralrimiva 2966 . . . 4  |-  ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( y  C.  S  /\  Tr  y ) )  ->  A. s  e.  ( S  \  y ) ( y  =  s  \/  y  e.  s ) )
83 pssdif 3945 . . . . . . 7  |-  ( y 
C.  S  ->  ( S  \  y )  =/=  (/) )
84 r19.2z 4060 . . . . . . . 8  |-  ( ( ( S  \  y
)  =/=  (/)  /\  A. s  e.  ( S  \  y ) ( y  =  s  \/  y  e.  s ) )  ->  E. s  e.  ( S  \  y ) ( y  =  s  \/  y  e.  s ) )
8584ex 450 . . . . . . 7  |-  ( ( S  \  y )  =/=  (/)  ->  ( A. s  e.  ( S  \  y ) ( y  =  s  \/  y  e.  s )  ->  E. s  e.  ( S  \  y
) ( y  =  s  \/  y  e.  s ) ) )
8683, 85syl 17 . . . . . 6  |-  ( y 
C.  S  ->  ( A. s  e.  ( S  \  y ) ( y  =  s  \/  y  e.  s )  ->  E. s  e.  ( S  \  y ) ( y  =  s  \/  y  e.  s ) ) )
8786ad2antrl 764 . . . . 5  |-  ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( y  C.  S  /\  Tr  y ) )  ->  ( A. s  e.  ( S  \  y
) ( y  =  s  \/  y  e.  s )  ->  E. s  e.  ( S  \  y
) ( y  =  s  \/  y  e.  s ) ) )
88 eleq1 2689 . . . . . . . . . 10  |-  ( y  =  s  ->  (
y  e.  S  <->  s  e.  S ) )
8915, 88syl5ibr 236 . . . . . . . . 9  |-  ( y  =  s  ->  (
s  e.  ( S 
\  y )  -> 
y  e.  S ) )
9089a1i 11 . . . . . . . 8  |-  ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( y  C.  S  /\  Tr  y ) )  ->  ( y  =  s  ->  ( s  e.  ( S  \  y
)  ->  y  e.  S ) ) )
91 trel 4759 . . . . . . . . . . 11  |-  ( Tr  S  ->  ( (
y  e.  s  /\  s  e.  S )  ->  y  e.  S ) )
9291expd 452 . . . . . . . . . 10  |-  ( Tr  S  ->  ( y  e.  s  ->  ( s  e.  S  ->  y  e.  S ) ) )
9315, 92syl7 74 . . . . . . . . 9  |-  ( Tr  S  ->  ( y  e.  s  ->  ( s  e.  ( S  \ 
y )  ->  y  e.  S ) ) )
9493ad2antrr 762 . . . . . . . 8  |-  ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( y  C.  S  /\  Tr  y ) )  ->  ( y  e.  s  ->  ( s  e.  ( S  \  y
)  ->  y  e.  S ) ) )
9590, 94jaod 395 . . . . . . 7  |-  ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( y  C.  S  /\  Tr  y ) )  ->  ( ( y  =  s  \/  y  e.  s )  ->  (
s  e.  ( S 
\  y )  -> 
y  e.  S ) ) )
9695com23 86 . . . . . 6  |-  ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( y  C.  S  /\  Tr  y ) )  ->  ( s  e.  ( S  \  y
)  ->  ( (
y  =  s  \/  y  e.  s )  ->  y  e.  S
) ) )
9796rexlimdv 3030 . . . . 5  |-  ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( y  C.  S  /\  Tr  y ) )  ->  ( E. s  e.  ( S  \  y
) ( y  =  s  \/  y  e.  s )  ->  y  e.  S ) )
9887, 97syld 47 . . . 4  |-  ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( y  C.  S  /\  Tr  y ) )  ->  ( A. s  e.  ( S  \  y
) ( y  =  s  \/  y  e.  s )  ->  y  e.  S ) )
9982, 98mpd 15 . . 3  |-  ( ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  /\  ( y  C.  S  /\  Tr  y ) )  ->  y  e.  S
)
10099ex 450 . 2  |-  ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  -> 
( ( y  C.  S  /\  Tr  y )  ->  y  e.  S
) )
101100alrimiv 1855 1  |-  ( ( Tr  S  /\  A. x  e.  S  A. z ( ( z 
C.  x  /\  Tr  z )  ->  z  e.  x ) )  ->  A. y ( ( y 
C.  S  /\  Tr  y )  ->  y  e.  S ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    \/ w3o 1036   A.wal 1481    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571    C_ wss 3574    C. wpss 3575   (/)c0 3915   Tr wtr 4752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437  df-iun 4522  df-tr 4753  df-suc 5729
This theorem is referenced by:  dfon2lem7  31694  dfon2lem8  31695
  Copyright terms: Public domain W3C validator