| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfon2lem5 | Structured version Visualization version Unicode version | ||
| Description: Lemma for dfon2 31697. Two sets satisfying the new definition
also satisfy
trichotomy with respect to |
| Ref | Expression |
|---|---|
| dfon2lem5.1 |
|
| dfon2lem5.2 |
|
| Ref | Expression |
|---|---|
| dfon2lem5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfon2lem5.1 |
. . . 4
| |
| 2 | dfon2lem5.2 |
. . . 4
| |
| 3 | 1, 2 | dfon2lem4 31691 |
. . 3
|
| 4 | dfpss2 3692 |
. . . . . 6
| |
| 5 | dfpss2 3692 |
. . . . . . 7
| |
| 6 | eqcom 2629 |
. . . . . . . . 9
| |
| 7 | 6 | notbii 310 |
. . . . . . . 8
|
| 8 | 7 | anbi2i 730 |
. . . . . . 7
|
| 9 | 5, 8 | bitri 264 |
. . . . . 6
|
| 10 | 4, 9 | orbi12i 543 |
. . . . 5
|
| 11 | andir 912 |
. . . . 5
| |
| 12 | 10, 11 | bitr4i 267 |
. . . 4
|
| 13 | orcom 402 |
. . . . 5
| |
| 14 | dfon2lem3 31690 |
. . . . . . . . 9
| |
| 15 | 2, 14 | ax-mp 5 |
. . . . . . . 8
|
| 16 | 15 | simpld 475 |
. . . . . . 7
|
| 17 | psseq1 3694 |
. . . . . . . . . . . 12
| |
| 18 | treq 4758 |
. . . . . . . . . . . 12
| |
| 19 | 17, 18 | anbi12d 747 |
. . . . . . . . . . 11
|
| 20 | eleq1 2689 |
. . . . . . . . . . 11
| |
| 21 | 19, 20 | imbi12d 334 |
. . . . . . . . . 10
|
| 22 | 2, 21 | spcv 3299 |
. . . . . . . . 9
|
| 23 | 22 | expcomd 454 |
. . . . . . . 8
|
| 24 | 23 | imp 445 |
. . . . . . 7
|
| 25 | 16, 24 | sylan2 491 |
. . . . . 6
|
| 26 | dfon2lem3 31690 |
. . . . . . . . 9
| |
| 27 | 1, 26 | ax-mp 5 |
. . . . . . . 8
|
| 28 | 27 | simpld 475 |
. . . . . . 7
|
| 29 | psseq1 3694 |
. . . . . . . . . . 11
| |
| 30 | treq 4758 |
. . . . . . . . . . 11
| |
| 31 | 29, 30 | anbi12d 747 |
. . . . . . . . . 10
|
| 32 | eleq1 2689 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | imbi12d 334 |
. . . . . . . . 9
|
| 34 | 1, 33 | spcv 3299 |
. . . . . . . 8
|
| 35 | 34 | expcomd 454 |
. . . . . . 7
|
| 36 | 28, 35 | mpan9 486 |
. . . . . 6
|
| 37 | 25, 36 | orim12d 883 |
. . . . 5
|
| 38 | 13, 37 | syl5bi 232 |
. . . 4
|
| 39 | 12, 38 | syl5bir 233 |
. . 3
|
| 40 | 3, 39 | mpand 711 |
. 2
|
| 41 | 3orrot 1044 |
. . 3
| |
| 42 | 3orass 1040 |
. . . 4
| |
| 43 | df-or 385 |
. . . 4
| |
| 44 | 42, 43 | bitri 264 |
. . 3
|
| 45 | 41, 44 | bitri 264 |
. 2
|
| 46 | 40, 45 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-pw 4160 df-sn 4178 df-pr 4180 df-uni 4437 df-iun 4522 df-tr 4753 df-suc 5729 |
| This theorem is referenced by: dfon2lem6 31693 dfon2 31697 |
| Copyright terms: Public domain | W3C validator |