MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsyli Structured version   Visualization version   Unicode version

Theorem nsyli 155
Description: A negated syllogism inference. (Contributed by NM, 3-May-1994.)
Hypotheses
Ref Expression
nsyli.1  |-  ( ph  ->  ( ps  ->  ch ) )
nsyli.2  |-  ( th 
->  -.  ch )
Assertion
Ref Expression
nsyli  |-  ( ph  ->  ( th  ->  -.  ps ) )

Proof of Theorem nsyli
StepHypRef Expression
1 nsyli.2 . 2  |-  ( th 
->  -.  ch )
2 nsyli.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
32con3d 148 . 2  |-  ( ph  ->  ( -.  ch  ->  -. 
ps ) )
41, 3syl5 34 1  |-  ( ph  ->  ( th  ->  -.  ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  necon3ad  2807  tz7.7  5749  onssneli  5837  tz7.48-2  7537  tz7.49  7540  php  8144  nndomo  8154  elirrv  8504  setind  8610  zorn2lem3  9320  alephval2  9394  inar1  9597  dfon2lem6  31693  sltres  31815  finminlem  32312  onint1  32448  poimirlem4  33413  gneispace  38432
  Copyright terms: Public domain W3C validator