MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsup2 Structured version   Visualization version   Unicode version

Theorem dfsup2 8350
Description: Quantifier free definition of supremum. (Contributed by Scott Fenton, 19-Feb-2013.)
Assertion
Ref Expression
dfsup2  |-  sup ( B ,  A ,  R )  =  U. ( A  \  (
( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) )

Proof of Theorem dfsup2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 8348 . 2  |-  sup ( B ,  A ,  R )  =  U. { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) }
2 dfrab3 3902 . . . 4  |-  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) }  =  ( A  i^i  { x  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) } )
3 abeq1 2733 . . . . . . 7  |-  ( { x  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) }  =  ( _V 
\  ( ( `' R " B )  u.  ( R "
( A  \  ( `' R " B ) ) ) ) )  <->  A. x ( ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) )  <-> 
x  e.  ( _V 
\  ( ( `' R " B )  u.  ( R "
( A  \  ( `' R " B ) ) ) ) ) ) )
4 vex 3203 . . . . . . . . 9  |-  x  e. 
_V
5 eldif 3584 . . . . . . . . 9  |-  ( x  e.  ( _V  \ 
( ( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) )  <->  ( x  e.  _V  /\  -.  x  e.  ( ( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) ) )
64, 5mpbiran 953 . . . . . . . 8  |-  ( x  e.  ( _V  \ 
( ( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) )  <->  -.  x  e.  ( ( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) )
74elima 5471 . . . . . . . . . . . 12  |-  ( x  e.  ( `' R " B )  <->  E. y  e.  B  y `' R x )
8 dfrex2 2996 . . . . . . . . . . . 12  |-  ( E. y  e.  B  y `' R x  <->  -.  A. y  e.  B  -.  y `' R x )
97, 8bitri 264 . . . . . . . . . . 11  |-  ( x  e.  ( `' R " B )  <->  -.  A. y  e.  B  -.  y `' R x )
104elima 5471 . . . . . . . . . . . 12  |-  ( x  e.  ( R "
( A  \  ( `' R " B ) ) )  <->  E. y  e.  ( A  \  ( `' R " B ) ) y R x )
11 dfrex2 2996 . . . . . . . . . . . 12  |-  ( E. y  e.  ( A 
\  ( `' R " B ) ) y R x  <->  -.  A. y  e.  ( A  \  ( `' R " B ) )  -.  y R x )
1210, 11bitri 264 . . . . . . . . . . 11  |-  ( x  e.  ( R "
( A  \  ( `' R " B ) ) )  <->  -.  A. y  e.  ( A  \  ( `' R " B ) )  -.  y R x )
139, 12orbi12i 543 . . . . . . . . . 10  |-  ( ( x  e.  ( `' R " B )  \/  x  e.  ( R " ( A 
\  ( `' R " B ) ) ) )  <->  ( -.  A. y  e.  B  -.  y `' R x  \/  -.  A. y  e.  ( A 
\  ( `' R " B ) )  -.  y R x ) )
14 elun 3753 . . . . . . . . . 10  |-  ( x  e.  ( ( `' R " B )  u.  ( R "
( A  \  ( `' R " B ) ) ) )  <->  ( x  e.  ( `' R " B )  \/  x  e.  ( R " ( A  \  ( `' R " B ) ) ) ) )
15 ianor 509 . . . . . . . . . 10  |-  ( -.  ( A. y  e.  B  -.  y `' R x  /\  A. y  e.  ( A  \  ( `' R " B ) )  -.  y R x )  <-> 
( -.  A. y  e.  B  -.  y `' R x  \/  -.  A. y  e.  ( A 
\  ( `' R " B ) )  -.  y R x ) )
1613, 14, 153bitr4i 292 . . . . . . . . 9  |-  ( x  e.  ( ( `' R " B )  u.  ( R "
( A  \  ( `' R " B ) ) ) )  <->  -.  ( A. y  e.  B  -.  y `' R x  /\  A. y  e.  ( A  \  ( `' R " B ) )  -.  y R x ) )
1716con2bii 347 . . . . . . . 8  |-  ( ( A. y  e.  B  -.  y `' R x  /\  A. y  e.  ( A  \  ( `' R " B ) )  -.  y R x )  <->  -.  x  e.  ( ( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) )
18 vex 3203 . . . . . . . . . . . 12  |-  y  e. 
_V
1918, 4brcnv 5305 . . . . . . . . . . 11  |-  ( y `' R x  <->  x R
y )
2019notbii 310 . . . . . . . . . 10  |-  ( -.  y `' R x  <->  -.  x R y )
2120ralbii 2980 . . . . . . . . 9  |-  ( A. y  e.  B  -.  y `' R x  <->  A. y  e.  B  -.  x R y )
22 impexp 462 . . . . . . . . . . 11  |-  ( ( ( y  e.  A  /\  -.  y  e.  ( `' R " B ) )  ->  -.  y R x )  <->  ( y  e.  A  ->  ( -.  y  e.  ( `' R " B )  ->  -.  y R x ) ) )
23 eldif 3584 . . . . . . . . . . . 12  |-  ( y  e.  ( A  \ 
( `' R " B ) )  <->  ( y  e.  A  /\  -.  y  e.  ( `' R " B ) ) )
2423imbi1i 339 . . . . . . . . . . 11  |-  ( ( y  e.  ( A 
\  ( `' R " B ) )  ->  -.  y R x )  <-> 
( ( y  e.  A  /\  -.  y  e.  ( `' R " B ) )  ->  -.  y R x ) )
2518elima 5471 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( `' R " B )  <->  E. z  e.  B  z `' R y )
26 vex 3203 . . . . . . . . . . . . . . . . 17  |-  z  e. 
_V
2726, 18brcnv 5305 . . . . . . . . . . . . . . . 16  |-  ( z `' R y  <->  y R
z )
2827rexbii 3041 . . . . . . . . . . . . . . 15  |-  ( E. z  e.  B  z `' R y  <->  E. z  e.  B  y R
z )
2925, 28bitri 264 . . . . . . . . . . . . . 14  |-  ( y  e.  ( `' R " B )  <->  E. z  e.  B  y R
z )
3029imbi2i 326 . . . . . . . . . . . . 13  |-  ( ( y R x  -> 
y  e.  ( `' R " B ) )  <->  ( y R x  ->  E. z  e.  B  y R
z ) )
31 con34b 306 . . . . . . . . . . . . 13  |-  ( ( y R x  -> 
y  e.  ( `' R " B ) )  <->  ( -.  y  e.  ( `' R " B )  ->  -.  y R x ) )
3230, 31bitr3i 266 . . . . . . . . . . . 12  |-  ( ( y R x  ->  E. z  e.  B  y R z )  <->  ( -.  y  e.  ( `' R " B )  ->  -.  y R x ) )
3332imbi2i 326 . . . . . . . . . . 11  |-  ( ( y  e.  A  -> 
( y R x  ->  E. z  e.  B  y R z ) )  <-> 
( y  e.  A  ->  ( -.  y  e.  ( `' R " B )  ->  -.  y R x ) ) )
3422, 24, 333bitr4i 292 . . . . . . . . . 10  |-  ( ( y  e.  ( A 
\  ( `' R " B ) )  ->  -.  y R x )  <-> 
( y  e.  A  ->  ( y R x  ->  E. z  e.  B  y R z ) ) )
3534ralbii2 2978 . . . . . . . . 9  |-  ( A. y  e.  ( A  \  ( `' R " B ) )  -.  y R x  <->  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) )
3621, 35anbi12i 733 . . . . . . . 8  |-  ( ( A. y  e.  B  -.  y `' R x  /\  A. y  e.  ( A  \  ( `' R " B ) )  -.  y R x )  <->  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )
376, 17, 363bitr2ri 289 . . . . . . 7  |-  ( ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) )  <-> 
x  e.  ( _V 
\  ( ( `' R " B )  u.  ( R "
( A  \  ( `' R " B ) ) ) ) ) )
383, 37mpgbir 1726 . . . . . 6  |-  { x  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) }  =  ( _V 
\  ( ( `' R " B )  u.  ( R "
( A  \  ( `' R " B ) ) ) ) )
3938ineq2i 3811 . . . . 5  |-  ( A  i^i  { x  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) } )  =  ( A  i^i  ( _V  \ 
( ( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) ) )
40 invdif 3868 . . . . 5  |-  ( A  i^i  ( _V  \ 
( ( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) ) )  =  ( A  \  (
( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) )
4139, 40eqtri 2644 . . . 4  |-  ( A  i^i  { x  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) } )  =  ( A 
\  ( ( `' R " B )  u.  ( R "
( A  \  ( `' R " B ) ) ) ) )
422, 41eqtri 2644 . . 3  |-  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) }  =  ( A 
\  ( ( `' R " B )  u.  ( R "
( A  \  ( `' R " B ) ) ) ) )
4342unieqi 4445 . 2  |-  U. {
x  e.  A  | 
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) }  =  U. ( A 
\  ( ( `' R " B )  u.  ( R "
( A  \  ( `' R " B ) ) ) ) )
441, 43eqtri 2644 1  |-  sup ( B ,  A ,  R )  =  U. ( A  \  (
( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573   U.cuni 4436   class class class wbr 4653   `'ccnv 5113   "cima 5117   supcsup 8346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-sup 8348
This theorem is referenced by:  nfsup  8357
  Copyright terms: Public domain W3C validator