| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dishaus | Structured version Visualization version Unicode version | ||
| Description: A discrete topology is Hausdorff. Morris, Topology without tears, p.72, ex. 13. (Contributed by FL, 24-Jun-2007.) (Proof shortened by Mario Carneiro, 8-Apr-2015.) |
| Ref | Expression |
|---|---|
| dishaus |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distop 20799 |
. 2
| |
| 2 | simplrl 800 |
. . . . . . 7
| |
| 3 | 2 | snssd 4340 |
. . . . . 6
|
| 4 | snex 4908 |
. . . . . . 7
| |
| 5 | 4 | elpw 4164 |
. . . . . 6
|
| 6 | 3, 5 | sylibr 224 |
. . . . 5
|
| 7 | simplrr 801 |
. . . . . . 7
| |
| 8 | 7 | snssd 4340 |
. . . . . 6
|
| 9 | snex 4908 |
. . . . . . 7
| |
| 10 | 9 | elpw 4164 |
. . . . . 6
|
| 11 | 8, 10 | sylibr 224 |
. . . . 5
|
| 12 | vsnid 4209 |
. . . . . 6
| |
| 13 | 12 | a1i 11 |
. . . . 5
|
| 14 | vsnid 4209 |
. . . . . 6
| |
| 15 | 14 | a1i 11 |
. . . . 5
|
| 16 | disjsn2 4247 |
. . . . . 6
| |
| 17 | 16 | adantl 482 |
. . . . 5
|
| 18 | eleq2 2690 |
. . . . . . 7
| |
| 19 | ineq1 3807 |
. . . . . . . 8
| |
| 20 | 19 | eqeq1d 2624 |
. . . . . . 7
|
| 21 | 18, 20 | 3anbi13d 1401 |
. . . . . 6
|
| 22 | eleq2 2690 |
. . . . . . 7
| |
| 23 | ineq2 3808 |
. . . . . . . 8
| |
| 24 | 23 | eqeq1d 2624 |
. . . . . . 7
|
| 25 | 22, 24 | 3anbi23d 1402 |
. . . . . 6
|
| 26 | 21, 25 | rspc2ev 3324 |
. . . . 5
|
| 27 | 6, 11, 13, 15, 17, 26 | syl113anc 1338 |
. . . 4
|
| 28 | 27 | ex 450 |
. . 3
|
| 29 | 28 | ralrimivva 2971 |
. 2
|
| 30 | unipw 4918 |
. . . 4
| |
| 31 | 30 | eqcomi 2631 |
. . 3
|
| 32 | 31 | ishaus 21126 |
. 2
|
| 33 | 1, 29, 32 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-sn 4178 df-pr 4180 df-uni 4437 df-top 20699 df-haus 21119 |
| This theorem is referenced by: ssoninhaus 32447 |
| Copyright terms: Public domain | W3C validator |