| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordthauslem | Structured version Visualization version Unicode version | ||
| Description: Lemma for ordthaus 21188. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| Ref | Expression |
|---|---|
| ordthauslem.1 |
|
| Ref | Expression |
|---|---|
| ordthauslem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll1 1100 |
. . . . . 6
| |
| 2 | simpll3 1102 |
. . . . . 6
| |
| 3 | ordthauslem.1 |
. . . . . . 7
| |
| 4 | 3 | ordtopn2 20999 |
. . . . . 6
|
| 5 | 1, 2, 4 | syl2anc 693 |
. . . . 5
|
| 6 | simpll2 1101 |
. . . . . 6
| |
| 7 | 3 | ordtopn1 20998 |
. . . . . 6
|
| 8 | 1, 6, 7 | syl2anc 693 |
. . . . 5
|
| 9 | simprr 796 |
. . . . . . . 8
| |
| 10 | simpl1 1064 |
. . . . . . . . . . 11
| |
| 11 | tsrps 17221 |
. . . . . . . . . . 11
| |
| 12 | 10, 11 | syl 17 |
. . . . . . . . . 10
|
| 13 | simprl 794 |
. . . . . . . . . 10
| |
| 14 | psasym 17210 |
. . . . . . . . . . 11
| |
| 15 | 14 | 3expia 1267 |
. . . . . . . . . 10
|
| 16 | 12, 13, 15 | syl2anc 693 |
. . . . . . . . 9
|
| 17 | 16 | necon3ad 2807 |
. . . . . . . 8
|
| 18 | 9, 17 | mpd 15 |
. . . . . . 7
|
| 19 | 18 | adantr 481 |
. . . . . 6
|
| 20 | breq2 4657 |
. . . . . . . 8
| |
| 21 | 20 | notbid 308 |
. . . . . . 7
|
| 22 | 21 | elrab 3363 |
. . . . . 6
|
| 23 | 6, 19, 22 | sylanbrc 698 |
. . . . 5
|
| 24 | breq1 4656 |
. . . . . . . 8
| |
| 25 | 24 | notbid 308 |
. . . . . . 7
|
| 26 | 25 | elrab 3363 |
. . . . . 6
|
| 27 | 2, 19, 26 | sylanbrc 698 |
. . . . 5
|
| 28 | simpr 477 |
. . . . 5
| |
| 29 | eleq2 2690 |
. . . . . . 7
| |
| 30 | ineq1 3807 |
. . . . . . . 8
| |
| 31 | 30 | eqeq1d 2624 |
. . . . . . 7
|
| 32 | 29, 31 | 3anbi13d 1401 |
. . . . . 6
|
| 33 | eleq2 2690 |
. . . . . . 7
| |
| 34 | ineq2 3808 |
. . . . . . . . 9
| |
| 35 | inrab 3899 |
. . . . . . . . 9
| |
| 36 | 34, 35 | syl6eq 2672 |
. . . . . . . 8
|
| 37 | 36 | eqeq1d 2624 |
. . . . . . 7
|
| 38 | 33, 37 | 3anbi23d 1402 |
. . . . . 6
|
| 39 | 32, 38 | rspc2ev 3324 |
. . . . 5
|
| 40 | 5, 8, 23, 27, 28, 39 | syl113anc 1338 |
. . . 4
|
| 41 | 40 | ex 450 |
. . 3
|
| 42 | rabn0 3958 |
. . . 4
| |
| 43 | simpll1 1100 |
. . . . . . 7
| |
| 44 | simprl 794 |
. . . . . . 7
| |
| 45 | 3 | ordtopn2 20999 |
. . . . . . 7
|
| 46 | 43, 44, 45 | syl2anc 693 |
. . . . . 6
|
| 47 | 3 | ordtopn1 20998 |
. . . . . . 7
|
| 48 | 43, 44, 47 | syl2anc 693 |
. . . . . 6
|
| 49 | simpll2 1101 |
. . . . . . 7
| |
| 50 | simprrr 805 |
. . . . . . 7
| |
| 51 | breq2 4657 |
. . . . . . . . 9
| |
| 52 | 51 | notbid 308 |
. . . . . . . 8
|
| 53 | 52 | elrab 3363 |
. . . . . . 7
|
| 54 | 49, 50, 53 | sylanbrc 698 |
. . . . . 6
|
| 55 | simpll3 1102 |
. . . . . . 7
| |
| 56 | simprrl 804 |
. . . . . . 7
| |
| 57 | breq1 4656 |
. . . . . . . . 9
| |
| 58 | 57 | notbid 308 |
. . . . . . . 8
|
| 59 | 58 | elrab 3363 |
. . . . . . 7
|
| 60 | 55, 56, 59 | sylanbrc 698 |
. . . . . 6
|
| 61 | 43, 44 | jca 554 |
. . . . . . . . . 10
|
| 62 | 3 | tsrlin 17219 |
. . . . . . . . . . 11
|
| 63 | 62 | 3expa 1265 |
. . . . . . . . . 10
|
| 64 | 61, 63 | sylan 488 |
. . . . . . . . 9
|
| 65 | oran 517 |
. . . . . . . . 9
| |
| 66 | 64, 65 | sylib 208 |
. . . . . . . 8
|
| 67 | 66 | ralrimiva 2966 |
. . . . . . 7
|
| 68 | rabeq0 3957 |
. . . . . . 7
| |
| 69 | 67, 68 | sylibr 224 |
. . . . . 6
|
| 70 | eleq2 2690 |
. . . . . . . 8
| |
| 71 | ineq1 3807 |
. . . . . . . . 9
| |
| 72 | 71 | eqeq1d 2624 |
. . . . . . . 8
|
| 73 | 70, 72 | 3anbi13d 1401 |
. . . . . . 7
|
| 74 | eleq2 2690 |
. . . . . . . 8
| |
| 75 | ineq2 3808 |
. . . . . . . . . 10
| |
| 76 | inrab 3899 |
. . . . . . . . . 10
| |
| 77 | 75, 76 | syl6eq 2672 |
. . . . . . . . 9
|
| 78 | 77 | eqeq1d 2624 |
. . . . . . . 8
|
| 79 | 74, 78 | 3anbi23d 1402 |
. . . . . . 7
|
| 80 | 73, 79 | rspc2ev 3324 |
. . . . . 6
|
| 81 | 46, 48, 54, 60, 69, 80 | syl113anc 1338 |
. . . . 5
|
| 82 | 81 | rexlimdvaa 3032 |
. . . 4
|
| 83 | 42, 82 | syl5bi 232 |
. . 3
|
| 84 | 41, 83 | pm2.61dne 2880 |
. 2
|
| 85 | 84 | exp32 631 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-fin 7959 df-fi 8317 df-topgen 16104 df-ordt 16161 df-ps 17200 df-tsr 17201 df-bases 20750 |
| This theorem is referenced by: ordthaus 21188 |
| Copyright terms: Public domain | W3C validator |