MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpmhm Structured version   Visualization version   Unicode version

Theorem frgpmhm 18178
Description: The "natural map" from words of the free monoid to their cosets in the free group is a surjective monoid homomorphism. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpmhm.m  |-  M  =  (freeMnd `  ( I  X.  2o ) )
frgpmhm.w  |-  W  =  ( Base `  M
)
frgpmhm.g  |-  G  =  (freeGrp `  I )
frgpmhm.r  |-  .~  =  ( ~FG  `  I )
frgpmhm.f  |-  F  =  ( x  e.  W  |->  [ x ]  .~  )
Assertion
Ref Expression
frgpmhm  |-  ( I  e.  V  ->  F  e.  ( M MndHom  G ) )
Distinct variable groups:    x, G    x, I    x, V    x, W    x,  .~
Allowed substitution hints:    F( x)    M( x)

Proof of Theorem frgpmhm
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2on 7568 . . . . 5  |-  2o  e.  On
2 xpexg 6960 . . . . 5  |-  ( ( I  e.  V  /\  2o  e.  On )  -> 
( I  X.  2o )  e.  _V )
31, 2mpan2 707 . . . 4  |-  ( I  e.  V  ->  (
I  X.  2o )  e.  _V )
4 frgpmhm.m . . . . 5  |-  M  =  (freeMnd `  ( I  X.  2o ) )
54frmdmnd 17396 . . . 4  |-  ( ( I  X.  2o )  e.  _V  ->  M  e.  Mnd )
63, 5syl 17 . . 3  |-  ( I  e.  V  ->  M  e.  Mnd )
7 frgpmhm.g . . . . 5  |-  G  =  (freeGrp `  I )
87frgpgrp 18175 . . . 4  |-  ( I  e.  V  ->  G  e.  Grp )
9 grpmnd 17429 . . . 4  |-  ( G  e.  Grp  ->  G  e.  Mnd )
108, 9syl 17 . . 3  |-  ( I  e.  V  ->  G  e.  Mnd )
116, 10jca 554 . 2  |-  ( I  e.  V  ->  ( M  e.  Mnd  /\  G  e.  Mnd ) )
12 frgpmhm.w . . . . . . . . . 10  |-  W  =  ( Base `  M
)
134, 12frmdbas 17389 . . . . . . . . 9  |-  ( ( I  X.  2o )  e.  _V  ->  W  = Word  ( I  X.  2o ) )
14 wrdexg 13315 . . . . . . . . . 10  |-  ( ( I  X.  2o )  e.  _V  -> Word  ( I  X.  2o )  e. 
_V )
15 fvi 6255 . . . . . . . . . 10  |-  (Word  (
I  X.  2o )  e.  _V  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  (
I  X.  2o ) )
1614, 15syl 17 . . . . . . . . 9  |-  ( ( I  X.  2o )  e.  _V  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  (
I  X.  2o ) )
1713, 16eqtr4d 2659 . . . . . . . 8  |-  ( ( I  X.  2o )  e.  _V  ->  W  =  (  _I  ` Word  ( I  X.  2o ) ) )
183, 17syl 17 . . . . . . 7  |-  ( I  e.  V  ->  W  =  (  _I  ` Word  ( I  X.  2o ) ) )
1918eleq2d 2687 . . . . . 6  |-  ( I  e.  V  ->  (
x  e.  W  <->  x  e.  (  _I  ` Word  ( I  X.  2o ) ) ) )
2019biimpa 501 . . . . 5  |-  ( ( I  e.  V  /\  x  e.  W )  ->  x  e.  (  _I 
` Word  ( I  X.  2o ) ) )
21 frgpmhm.r . . . . . 6  |-  .~  =  ( ~FG  `  I )
22 eqid 2622 . . . . . 6  |-  (  _I 
` Word  ( I  X.  2o ) )  =  (  _I  ` Word  ( I  X.  2o ) )
23 eqid 2622 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
247, 21, 22, 23frgpeccl 18174 . . . . 5  |-  ( x  e.  (  _I  ` Word  ( I  X.  2o ) )  ->  [ x ]  .~  e.  ( Base `  G ) )
2520, 24syl 17 . . . 4  |-  ( ( I  e.  V  /\  x  e.  W )  ->  [ x ]  .~  e.  ( Base `  G
) )
26 frgpmhm.f . . . 4  |-  F  =  ( x  e.  W  |->  [ x ]  .~  )
2725, 26fmptd 6385 . . 3  |-  ( I  e.  V  ->  F : W --> ( Base `  G
) )
2822, 21efger 18131 . . . . . . . 8  |-  .~  Er  (  _I  ` Word  ( I  X.  2o ) )
29 ereq2 7750 . . . . . . . . 9  |-  ( W  =  (  _I  ` Word  ( I  X.  2o ) )  ->  (  .~  Er  W  <->  .~  Er  (  _I  ` Word  ( I  X.  2o ) ) ) )
3018, 29syl 17 . . . . . . . 8  |-  ( I  e.  V  ->  (  .~  Er  W  <->  .~  Er  (  _I  ` Word  ( I  X.  2o ) ) ) )
3128, 30mpbiri 248 . . . . . . 7  |-  ( I  e.  V  ->  .~  Er  W )
3231adantr 481 . . . . . 6  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  .~  Er  W )
33 fvex 6201 . . . . . . . 8  |-  ( Base `  M )  e.  _V
3412, 33eqeltri 2697 . . . . . . 7  |-  W  e. 
_V
3534a1i 11 . . . . . 6  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  W  e.  _V )
3632, 35, 26divsfval 16207 . . . . 5  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  ( F `  ( a ++  b ) )  =  [ ( a ++  b ) ]  .~  )
37 eqid 2622 . . . . . . . 8  |-  ( +g  `  M )  =  ( +g  `  M )
384, 12, 37frmdadd 17392 . . . . . . 7  |-  ( ( a  e.  W  /\  b  e.  W )  ->  ( a ( +g  `  M ) b )  =  ( a ++  b ) )
3938adantl 482 . . . . . 6  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  (
a ( +g  `  M
) b )  =  ( a ++  b ) )
4039fveq2d 6195 . . . . 5  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  ( F `  ( a
( +g  `  M ) b ) )  =  ( F `  (
a ++  b ) ) )
4132, 35, 26divsfval 16207 . . . . . . 7  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  ( F `  a )  =  [ a ]  .~  )
4232, 35, 26divsfval 16207 . . . . . . 7  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  ( F `  b )  =  [ b ]  .~  )
4341, 42oveq12d 6668 . . . . . 6  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  (
( F `  a
) ( +g  `  G
) ( F `  b ) )  =  ( [ a ]  .~  ( +g  `  G
) [ b ]  .~  ) )
4418eleq2d 2687 . . . . . . . . 9  |-  ( I  e.  V  ->  (
a  e.  W  <->  a  e.  (  _I  ` Word  ( I  X.  2o ) ) ) )
4518eleq2d 2687 . . . . . . . . 9  |-  ( I  e.  V  ->  (
b  e.  W  <->  b  e.  (  _I  ` Word  ( I  X.  2o ) ) ) )
4644, 45anbi12d 747 . . . . . . . 8  |-  ( I  e.  V  ->  (
( a  e.  W  /\  b  e.  W
)  <->  ( a  e.  (  _I  ` Word  ( I  X.  2o ) )  /\  b  e.  (  _I  ` Word  ( I  X.  2o ) ) ) ) )
4746biimpa 501 . . . . . . 7  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  (
a  e.  (  _I 
` Word  ( I  X.  2o ) )  /\  b  e.  (  _I  ` Word  ( I  X.  2o ) ) ) )
48 eqid 2622 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
4922, 7, 21, 48frgpadd 18176 . . . . . . 7  |-  ( ( a  e.  (  _I 
` Word  ( I  X.  2o ) )  /\  b  e.  (  _I  ` Word  ( I  X.  2o ) ) )  ->  ( [
a ]  .~  ( +g  `  G ) [ b ]  .~  )  =  [ ( a ++  b ) ]  .~  )
5047, 49syl 17 . . . . . 6  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  ( [ a ]  .~  ( +g  `  G ) [ b ]  .~  )  =  [ (
a ++  b ) ]  .~  )
5143, 50eqtrd 2656 . . . . 5  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  (
( F `  a
) ( +g  `  G
) ( F `  b ) )  =  [ ( a ++  b ) ]  .~  )
5236, 40, 513eqtr4d 2666 . . . 4  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  ( F `  ( a
( +g  `  M ) b ) )  =  ( ( F `  a ) ( +g  `  G ) ( F `
 b ) ) )
5352ralrimivva 2971 . . 3  |-  ( I  e.  V  ->  A. a  e.  W  A. b  e.  W  ( F `  ( a ( +g  `  M ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) ) )
5434a1i 11 . . . . 5  |-  ( I  e.  V  ->  W  e.  _V )
5531, 54, 26divsfval 16207 . . . 4  |-  ( I  e.  V  ->  ( F `  (/) )  =  [ (/) ]  .~  )
567, 21frgp0 18173 . . . . 5  |-  ( I  e.  V  ->  ( G  e.  Grp  /\  [ (/)
]  .~  =  ( 0g `  G ) ) )
5756simprd 479 . . . 4  |-  ( I  e.  V  ->  [ (/) ]  .~  =  ( 0g
`  G ) )
5855, 57eqtrd 2656 . . 3  |-  ( I  e.  V  ->  ( F `  (/) )  =  ( 0g `  G
) )
5927, 53, 583jca 1242 . 2  |-  ( I  e.  V  ->  ( F : W --> ( Base `  G )  /\  A. a  e.  W  A. b  e.  W  ( F `  ( a
( +g  `  M ) b ) )  =  ( ( F `  a ) ( +g  `  G ) ( F `
 b ) )  /\  ( F `  (/) )  =  ( 0g
`  G ) ) )
604frmd0 17397 . . 3  |-  (/)  =  ( 0g `  M )
61 eqid 2622 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
6212, 23, 37, 48, 60, 61ismhm 17337 . 2  |-  ( F  e.  ( M MndHom  G
)  <->  ( ( M  e.  Mnd  /\  G  e.  Mnd )  /\  ( F : W --> ( Base `  G )  /\  A. a  e.  W  A. b  e.  W  ( F `  ( a
( +g  `  M ) b ) )  =  ( ( F `  a ) ( +g  `  G ) ( F `
 b ) )  /\  ( F `  (/) )  =  ( 0g
`  G ) ) ) )
6311, 59, 62sylanbrc 698 1  |-  ( I  e.  V  ->  F  e.  ( M MndHom  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   (/)c0 3915    |-> cmpt 4729    _I cid 5023    X. cxp 5112   Oncon0 5723   -->wf 5884   ` cfv 5888  (class class class)co 6650   2oc2o 7554    Er wer 7739   [cec 7740  Word cword 13291   ++ cconcat 13293   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Mndcmnd 17294   MndHom cmhm 17333  freeMndcfrmd 17384   Grpcgrp 17422   ~FG cefg 18119  freeGrpcfrgp 18120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-frmd 17386  df-grp 17425  df-efg 18122  df-frgp 18123
This theorem is referenced by:  frgpup3lem  18190
  Copyright terms: Public domain W3C validator