MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup3lem Structured version   Visualization version   Unicode version

Theorem frgpup3lem 18190
Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup.b  |-  B  =  ( Base `  H
)
frgpup.n  |-  N  =  ( invg `  H )
frgpup.t  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
frgpup.h  |-  ( ph  ->  H  e.  Grp )
frgpup.i  |-  ( ph  ->  I  e.  V )
frgpup.a  |-  ( ph  ->  F : I --> B )
frgpup.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
frgpup.r  |-  .~  =  ( ~FG  `  I )
frgpup.g  |-  G  =  (freeGrp `  I )
frgpup.x  |-  X  =  ( Base `  G
)
frgpup.e  |-  E  =  ran  ( g  e.  W  |->  <. [ g ]  .~  ,  ( H 
gsumg  ( T  o.  g
) ) >. )
frgpup.u  |-  U  =  (varFGrp `  I )
frgpup3.k  |-  ( ph  ->  K  e.  ( G 
GrpHom  H ) )
frgpup3.e  |-  ( ph  ->  ( K  o.  U
)  =  F )
Assertion
Ref Expression
frgpup3lem  |-  ( ph  ->  K  =  E )
Distinct variable groups:    y, g,
z    g, H    y, F, z    y, N, z    B, g, y, z    T, g    .~ , g    ph, g, y, z    y, I, z   
g, W
Allowed substitution hints:    .~ ( y, z)    T( y, z)    U( y, z, g)    E( y, z, g)    F( g)    G( y, z, g)    H( y, z)    I( g)    K( y, z, g)    N( g)    V( y, z, g)    W( y, z)    X( y, z, g)

Proof of Theorem frgpup3lem
Dummy variables  a 
t  n  i  j  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup3.k . . 3  |-  ( ph  ->  K  e.  ( G 
GrpHom  H ) )
2 frgpup.x . . . 4  |-  X  =  ( Base `  G
)
3 frgpup.b . . . 4  |-  B  =  ( Base `  H
)
42, 3ghmf 17664 . . 3  |-  ( K  e.  ( G  GrpHom  H )  ->  K : X
--> B )
5 ffn 6045 . . 3  |-  ( K : X --> B  ->  K  Fn  X )
61, 4, 53syl 18 . 2  |-  ( ph  ->  K  Fn  X )
7 frgpup.n . . . 4  |-  N  =  ( invg `  H )
8 frgpup.t . . . 4  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
9 frgpup.h . . . 4  |-  ( ph  ->  H  e.  Grp )
10 frgpup.i . . . 4  |-  ( ph  ->  I  e.  V )
11 frgpup.a . . . 4  |-  ( ph  ->  F : I --> B )
12 frgpup.w . . . 4  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
13 frgpup.r . . . 4  |-  .~  =  ( ~FG  `  I )
14 frgpup.g . . . 4  |-  G  =  (freeGrp `  I )
15 frgpup.e . . . 4  |-  E  =  ran  ( g  e.  W  |->  <. [ g ]  .~  ,  ( H 
gsumg  ( T  o.  g
) ) >. )
163, 7, 8, 9, 10, 11, 12, 13, 14, 2, 15frgpup1 18188 . . 3  |-  ( ph  ->  E  e.  ( G 
GrpHom  H ) )
172, 3ghmf 17664 . . 3  |-  ( E  e.  ( G  GrpHom  H )  ->  E : X
--> B )
18 ffn 6045 . . 3  |-  ( E : X --> B  ->  E  Fn  X )
1916, 17, 183syl 18 . 2  |-  ( ph  ->  E  Fn  X )
20 eqid 2622 . . . . . . . . 9  |-  (freeMnd `  (
I  X.  2o ) )  =  (freeMnd `  (
I  X.  2o ) )
2114, 20, 13frgpval 18171 . . . . . . . 8  |-  ( I  e.  V  ->  G  =  ( (freeMnd `  (
I  X.  2o ) )  /.s 
.~  ) )
2210, 21syl 17 . . . . . . 7  |-  ( ph  ->  G  =  ( (freeMnd `  ( I  X.  2o ) )  /.s  .~  )
)
23 2on 7568 . . . . . . . . . . 11  |-  2o  e.  On
24 xpexg 6960 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  2o  e.  On )  -> 
( I  X.  2o )  e.  _V )
2510, 23, 24sylancl 694 . . . . . . . . . 10  |-  ( ph  ->  ( I  X.  2o )  e.  _V )
26 wrdexg 13315 . . . . . . . . . 10  |-  ( ( I  X.  2o )  e.  _V  -> Word  ( I  X.  2o )  e. 
_V )
27 fvi 6255 . . . . . . . . . 10  |-  (Word  (
I  X.  2o )  e.  _V  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  (
I  X.  2o ) )
2825, 26, 273syl 18 . . . . . . . . 9  |-  ( ph  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  ( I  X.  2o ) )
2912, 28syl5eq 2668 . . . . . . . 8  |-  ( ph  ->  W  = Word  ( I  X.  2o ) )
30 eqid 2622 . . . . . . . . . 10  |-  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) )
3120, 30frmdbas 17389 . . . . . . . . 9  |-  ( ( I  X.  2o )  e.  _V  ->  ( Base `  (freeMnd `  (
I  X.  2o ) ) )  = Word  (
I  X.  2o ) )
3225, 31syl 17 . . . . . . . 8  |-  ( ph  ->  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  = Word  ( I  X.  2o ) )
3329, 32eqtr4d 2659 . . . . . . 7  |-  ( ph  ->  W  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
34 fvex 6201 . . . . . . . . 9  |-  ( ~FG  `  I
)  e.  _V
3513, 34eqeltri 2697 . . . . . . . 8  |-  .~  e.  _V
3635a1i 11 . . . . . . 7  |-  ( ph  ->  .~  e.  _V )
37 fvexd 6203 . . . . . . 7  |-  ( ph  ->  (freeMnd `  ( I  X.  2o ) )  e. 
_V )
3822, 33, 36, 37qusbas 16205 . . . . . 6  |-  ( ph  ->  ( W /.  .~  )  =  ( Base `  G ) )
3938, 2syl6reqr 2675 . . . . 5  |-  ( ph  ->  X  =  ( W /.  .~  ) )
40 eqimss 3657 . . . . 5  |-  ( X  =  ( W /.  .~  )  ->  X  C_  ( W /.  .~  ) )
4139, 40syl 17 . . . 4  |-  ( ph  ->  X  C_  ( W /.  .~  ) )
4241sselda 3603 . . 3  |-  ( (
ph  /\  a  e.  X )  ->  a  e.  ( W /.  .~  ) )
43 eqid 2622 . . . 4  |-  ( W /.  .~  )  =  ( W /.  .~  )
44 fveq2 6191 . . . . 5  |-  ( [ t ]  .~  =  a  ->  ( K `  [ t ]  .~  )  =  ( K `  a ) )
45 fveq2 6191 . . . . 5  |-  ( [ t ]  .~  =  a  ->  ( E `  [ t ]  .~  )  =  ( E `  a ) )
4644, 45eqeq12d 2637 . . . 4  |-  ( [ t ]  .~  =  a  ->  ( ( K `
 [ t ]  .~  )  =  ( E `  [ t ]  .~  )  <->  ( K `  a )  =  ( E `  a ) ) )
47 simpr 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  W )  ->  t  e.  W )
4829adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  W )  ->  W  = Word  ( I  X.  2o ) )
4947, 48eleqtrd 2703 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  W )  ->  t  e. Word  ( I  X.  2o ) )
50 wrdf 13310 . . . . . . . . . . . . 13  |-  ( t  e. Word  ( I  X.  2o )  ->  t : ( 0..^ ( # `  t ) ) --> ( I  X.  2o ) )
5149, 50syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  W )  ->  t : ( 0..^ (
# `  t )
) --> ( I  X.  2o ) )
5251ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  ( t `  n )  e.  ( I  X.  2o ) )
53 elxp2 5132 . . . . . . . . . . 11  |-  ( ( t `  n )  e.  ( I  X.  2o )  <->  E. i  e.  I  E. j  e.  2o  ( t `  n
)  =  <. i ,  j >. )
5452, 53sylib 208 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  E. i  e.  I  E. j  e.  2o  ( t `  n
)  =  <. i ,  j >. )
55 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( y  =  i  ->  ( F `  y )  =  ( F `  i ) )
5655fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( y  =  i  ->  ( N `  ( F `  y ) )  =  ( N `  ( F `  i )
) )
5755, 56ifeq12d 4106 . . . . . . . . . . . . . . . 16  |-  ( y  =  i  ->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) )  =  if ( z  =  (/) ,  ( F `
 i ) ,  ( N `  ( F `  i )
) ) )
58 eqeq1 2626 . . . . . . . . . . . . . . . . 17  |-  ( z  =  j  ->  (
z  =  (/)  <->  j  =  (/) ) )
5958ifbid 4108 . . . . . . . . . . . . . . . 16  |-  ( z  =  j  ->  if ( z  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  if ( j  =  (/) ,  ( F `
 i ) ,  ( N `  ( F `  i )
) ) )
60 fvex 6201 . . . . . . . . . . . . . . . . 17  |-  ( F `
 i )  e. 
_V
61 fvex 6201 . . . . . . . . . . . . . . . . 17  |-  ( N `
 ( F `  i ) )  e. 
_V
6260, 61ifex 4156 . . . . . . . . . . . . . . . 16  |-  if ( j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) )  e.  _V
6357, 59, 8, 62ovmpt2 6796 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  I  /\  j  e.  2o )  ->  ( i T j )  =  if ( j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) ) )
6463adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  2o ) )  -> 
( i T j )  =  if ( j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) ) )
65 elpri 4197 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  { (/) ,  1o }  ->  ( j  =  (/)  \/  j  =  1o ) )
66 df2o3 7573 . . . . . . . . . . . . . . . . 17  |-  2o  =  { (/) ,  1o }
6765, 66eleq2s 2719 . . . . . . . . . . . . . . . 16  |-  ( j  e.  2o  ->  (
j  =  (/)  \/  j  =  1o ) )
68 frgpup3.e . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( K  o.  U
)  =  F )
6968adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  ( K  o.  U )  =  F )
7069fveq1d 6193 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  I )  ->  (
( K  o.  U
) `  i )  =  ( F `  i ) )
71 frgpup.u . . . . . . . . . . . . . . . . . . . . . . 23  |-  U  =  (varFGrp `  I )
7213, 71, 14, 2vrgpf 18181 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( I  e.  V  ->  U : I --> X )
7310, 72syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  U : I --> X )
74 fvco3 6275 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( U : I --> X  /\  i  e.  I )  ->  ( ( K  o.  U ) `  i
)  =  ( K `
 ( U `  i ) ) )
7573, 74sylan 488 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  I )  ->  (
( K  o.  U
) `  i )  =  ( K `  ( U `  i ) ) )
7670, 75eqtr3d 2658 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  i  e.  I )  ->  ( F `  i )  =  ( K `  ( U `  i ) ) )
7776adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  ( F `  i )  =  ( K `  ( U `  i ) ) )
78 iftrue 4092 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  (/)  ->  if ( j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) )  =  ( F `  i ) )
7978adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( F `  i ) )
80 simpr 477 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  j  =  (/) )
8180opeq2d 4409 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  <. i ,  j >.  =  <. i ,  (/) >. )
8281s1eqd 13381 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  <" <. i ,  j >. ">  =  <" <. i ,  (/) >. "> )
8382eceq1d 7783 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  [ <"
<. i ,  j >. "> ]  .~  =  [ <" <. i ,  (/) >. "> ]  .~  )
8413, 71vrgpval 18180 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( I  e.  V  /\  i  e.  I )  ->  ( U `  i
)  =  [ <"
<. i ,  (/) >. "> ]  .~  )
8510, 84sylan 488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  ( U `  i )  =  [ <" <. i ,  (/) >. "> ]  .~  )
8685adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  ( U `  i )  =  [ <" <. i ,  (/) >. "> ]  .~  )
8783, 86eqtr4d 2659 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  [ <"
<. i ,  j >. "> ]  .~  =  ( U `  i ) )
8887fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  ( K `  [ <" <. i ,  j >. "> ]  .~  )  =  ( K `  ( U `
 i ) ) )
8977, 79, 883eqtr4d 2666 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
9076fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  I )  ->  ( N `  ( F `  i ) )  =  ( N `  ( K `  ( U `  i ) ) ) )
911adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  K  e.  ( G  GrpHom  H ) )
9273ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  ( U `  i )  e.  X )
93 eqid 2622 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( invg `  G )  =  ( invg `  G )
942, 93, 7ghminv 17667 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  ( G 
GrpHom  H )  /\  ( U `  i )  e.  X )  ->  ( K `  ( ( invg `  G ) `
 ( U `  i ) ) )  =  ( N `  ( K `  ( U `
 i ) ) ) )
9591, 92, 94syl2anc 693 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  I )  ->  ( K `  ( ( invg `  G ) `
 ( U `  i ) ) )  =  ( N `  ( K `  ( U `
 i ) ) ) )
9690, 95eqtr4d 2659 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  i  e.  I )  ->  ( N `  ( F `  i ) )  =  ( K `  (
( invg `  G ) `  ( U `  i )
) ) )
9796adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  ( N `  ( F `  i ) )  =  ( K `  (
( invg `  G ) `  ( U `  i )
) ) )
98 1n0 7575 . . . . . . . . . . . . . . . . . . . 20  |-  1o  =/=  (/)
99 simpr 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  j  =  1o )
10099neeq1d 2853 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  (
j  =/=  (/)  <->  1o  =/=  (/) ) )
10198, 100mpbiri 248 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  j  =/=  (/) )
102 ifnefalse 4098 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =/=  (/)  ->  if (
j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) )  =  ( N `  ( F `
 i ) ) )
103101, 102syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( N `  ( F `  i ) ) )
10499opeq2d 4409 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  <. i ,  j >.  =  <. i ,  1o >. )
105104s1eqd 13381 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  <" <. i ,  j >. ">  =  <" <. i ,  1o >. "> )
106105eceq1d 7783 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  [ <"
<. i ,  j >. "> ]  .~  =  [ <" <. i ,  1o >. "> ]  .~  )
10713, 71, 14, 93vrgpinv 18182 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( I  e.  V  /\  i  e.  I )  ->  ( ( invg `  G ) `  ( U `  i )
)  =  [ <"
<. i ,  1o >. "> ]  .~  )
10810, 107sylan 488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  (
( invg `  G ) `  ( U `  i )
)  =  [ <"
<. i ,  1o >. "> ]  .~  )
109108adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  (
( invg `  G ) `  ( U `  i )
)  =  [ <"
<. i ,  1o >. "> ]  .~  )
110106, 109eqtr4d 2659 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  [ <"
<. i ,  j >. "> ]  .~  =  ( ( invg `  G ) `  ( U `  i )
) )
111110fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  ( K `  [ <" <. i ,  j >. "> ]  .~  )  =  ( K `  ( ( invg `  G
) `  ( U `  i ) ) ) )
11297, 103, 1113eqtr4d 2666 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
11389, 112jaodan 826 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  i  e.  I )  /\  (
j  =  (/)  \/  j  =  1o ) )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
11467, 113sylan2 491 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  i  e.  I )  /\  j  e.  2o )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
115114anasss 679 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  2o ) )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
11664, 115eqtrd 2656 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  2o ) )  -> 
( i T j )  =  ( K `
 [ <" <. i ,  j >. "> ]  .~  ) )
117 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  ( T `  ( t `  n
) )  =  ( T `  <. i ,  j >. )
)
118 df-ov 6653 . . . . . . . . . . . . . . 15  |-  ( i T j )  =  ( T `  <. i ,  j >. )
119117, 118syl6eqr 2674 . . . . . . . . . . . . . 14  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  ( T `  ( t `  n
) )  =  ( i T j ) )
120 s1eq 13380 . . . . . . . . . . . . . . . 16  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  <" ( t `
 n ) ">  =  <" <. i ,  j >. "> )
121120eceq1d 7783 . . . . . . . . . . . . . . 15  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  [ <" (
t `  n ) "> ]  .~  =  [ <" <. i ,  j >. "> ]  .~  )
122121fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  ( K `  [ <" ( t `
 n ) "> ]  .~  )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
123119, 122eqeq12d 2637 . . . . . . . . . . . . 13  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  ( ( T `
 ( t `  n ) )  =  ( K `  [ <" ( t `  n ) "> ]  .~  )  <->  ( i T j )  =  ( K `  [ <" <. i ,  j
>. "> ]  .~  ) ) )
124116, 123syl5ibrcom 237 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  2o ) )  -> 
( ( t `  n )  =  <. i ,  j >.  ->  ( T `  ( t `  n ) )  =  ( K `  [ <" ( t `  n ) "> ]  .~  ) ) )
125124rexlimdvva 3038 . . . . . . . . . . 11  |-  ( ph  ->  ( E. i  e.  I  E. j  e.  2o  ( t `  n )  =  <. i ,  j >.  ->  ( T `  ( t `  n ) )  =  ( K `  [ <" ( t `  n ) "> ]  .~  ) ) )
126125ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  ( E. i  e.  I  E. j  e.  2o  ( t `  n )  =  <. i ,  j >.  ->  ( T `  ( t `  n ) )  =  ( K `  [ <" ( t `  n ) "> ]  .~  ) ) )
12754, 126mpd 15 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  ( T `  ( t `  n
) )  =  ( K `  [ <" ( t `  n
) "> ]  .~  ) )
128127mpteq2dva 4744 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
n  e.  ( 0..^ ( # `  t
) )  |->  ( T `
 ( t `  n ) ) )  =  ( n  e.  ( 0..^ ( # `  t ) )  |->  ( K `  [ <" ( t `  n
) "> ]  .~  ) ) )
1293, 7, 8, 9, 10, 11frgpuptf 18183 . . . . . . . . . 10  |-  ( ph  ->  T : ( I  X.  2o ) --> B )
130129adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  T : ( I  X.  2o ) --> B )
131 fcompt 6400 . . . . . . . . 9  |-  ( ( T : ( I  X.  2o ) --> B  /\  t : ( 0..^ ( # `  t
) ) --> ( I  X.  2o ) )  ->  ( T  o.  t )  =  ( n  e.  ( 0..^ ( # `  t
) )  |->  ( T `
 ( t `  n ) ) ) )
132130, 51, 131syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  ( T  o.  t )  =  ( n  e.  ( 0..^ ( # `  t ) )  |->  ( T `  ( t `
 n ) ) ) )
13352s1cld 13383 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  <" ( t `
 n ) ">  e. Word  ( I  X.  2o ) )
13429ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  W  = Word  (
I  X.  2o ) )
135133, 134eleqtrrd 2704 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  <" ( t `
 n ) ">  e.  W )
13614, 13, 12, 2frgpeccl 18174 . . . . . . . . . 10  |-  ( <" ( t `  n ) ">  e.  W  ->  [ <" ( t `  n
) "> ]  .~  e.  X )
137135, 136syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  [ <" (
t `  n ) "> ]  .~  e.  X )
13851feqmptd 6249 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  t  =  ( n  e.  ( 0..^ ( # `  t ) )  |->  ( t `  n ) ) )
13910adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  W )  ->  I  e.  V )
140139, 23, 24sylancl 694 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  W )  ->  (
I  X.  2o )  e.  _V )
141 eqid 2622 . . . . . . . . . . . . 13  |-  (varFMnd `  (
I  X.  2o ) )  =  (varFMnd `  (
I  X.  2o ) )
142141vrmdfval 17393 . . . . . . . . . . . 12  |-  ( ( I  X.  2o )  e.  _V  ->  (varFMnd `  (
I  X.  2o ) )  =  ( w  e.  ( I  X.  2o )  |->  <" w "> ) )
143140, 142syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  (varFMnd `  (
I  X.  2o ) )  =  ( w  e.  ( I  X.  2o )  |->  <" w "> ) )
144 s1eq 13380 . . . . . . . . . . 11  |-  ( w  =  ( t `  n )  ->  <" w ">  =  <" (
t `  n ) "> )
14552, 138, 143, 144fmptco 6396 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  =  ( n  e.  ( 0..^ (
# `  t )
)  |->  <" ( t `
 n ) "> ) )
146 eqidd 2623 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  )  =  ( w  e.  W  |->  [ w ]  .~  ) )
147 eceq1 7782 . . . . . . . . . 10  |-  ( w  =  <" ( t `
 n ) ">  ->  [ w ]  .~  =  [ <" ( t `  n
) "> ]  .~  )
148135, 145, 146, 147fmptco 6396 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) )  =  ( n  e.  ( 0..^ (
# `  t )
)  |->  [ <" (
t `  n ) "> ]  .~  )
)
1491adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  K  e.  ( G  GrpHom  H ) )
150149, 4syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  K : X --> B )
151150feqmptd 6249 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  K  =  ( w  e.  X  |->  ( K `  w ) ) )
152 fveq2 6191 . . . . . . . . 9  |-  ( w  =  [ <" (
t `  n ) "> ]  .~  ->  ( K `  w )  =  ( K `  [ <" ( t `
 n ) "> ]  .~  )
)
153137, 148, 151, 152fmptco 6396 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  ( K  o.  ( (
w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  ( n  e.  ( 0..^ ( # `  t
) )  |->  ( K `
 [ <" (
t `  n ) "> ]  .~  )
) )
154128, 132, 1533eqtr4d 2666 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  ( T  o.  t )  =  ( K  o.  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) )
155154oveq2d 6666 . . . . . 6  |-  ( (
ph  /\  t  e.  W )  ->  ( H  gsumg  ( T  o.  t
) )  =  ( H  gsumg  ( K  o.  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) ) ) ) )
1563, 7, 8, 9, 10, 11, 12, 13, 14, 2, 15frgpupval 18187 . . . . . 6  |-  ( (
ph  /\  t  e.  W )  ->  ( E `  [ t ]  .~  )  =  ( H  gsumg  ( T  o.  t
) ) )
157 ghmmhm 17670 . . . . . . . 8  |-  ( K  e.  ( G  GrpHom  H )  ->  K  e.  ( G MndHom  H ) )
158149, 157syl 17 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  K  e.  ( G MndHom  H ) )
159141vrmdf 17395 . . . . . . . . . . 11  |-  ( ( I  X.  2o )  e.  _V  ->  (varFMnd `  (
I  X.  2o ) ) : ( I  X.  2o ) -->Word  ( I  X.  2o ) )
160140, 159syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (varFMnd `  (
I  X.  2o ) ) : ( I  X.  2o ) -->Word  ( I  X.  2o ) )
16148feq3d 6032 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) --> W  <->  (varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) -->Word  ( I  X.  2o ) ) )
162160, 161mpbird 247 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (varFMnd `  (
I  X.  2o ) ) : ( I  X.  2o ) --> W )
163 wrdco 13577 . . . . . . . . 9  |-  ( ( t  e. Word  ( I  X.  2o )  /\  (varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) --> W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  W )
16449, 162, 163syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  W )
16533adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  W )  ->  W  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
166165mpteq1d 4738 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  )  =  ( w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  |->  [ w ]  .~  )
)
167 eqid 2622 . . . . . . . . . . . . 13  |-  ( w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  |->  [ w ]  .~  )  =  ( w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  |->  [ w ]  .~  )
16820, 30, 14, 13, 167frgpmhm 18178 . . . . . . . . . . . 12  |-  ( I  e.  V  ->  (
w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) 
|->  [ w ]  .~  )  e.  ( (freeMnd `  ( I  X.  2o ) ) MndHom  G ) )
169139, 168syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) 
|->  [ w ]  .~  )  e.  ( (freeMnd `  ( I  X.  2o ) ) MndHom  G ) )
170166, 169eqeltrd 2701 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  )  e.  ( (freeMnd `  (
I  X.  2o ) ) MndHom  G ) )
17130, 2mhmf 17340 . . . . . . . . . 10  |-  ( ( w  e.  W  |->  [ w ]  .~  )  e.  ( (freeMnd `  (
I  X.  2o ) ) MndHom  G )  -> 
( w  e.  W  |->  [ w ]  .~  ) : ( Base `  (freeMnd `  ( I  X.  2o ) ) ) --> X )
172170, 171syl 17 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  ) : ( Base `  (freeMnd `  ( I  X.  2o ) ) ) --> X )
173165feq2d 6031 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  ) : W --> X  <->  ( w  e.  W  |->  [ w ]  .~  ) : (
Base `  (freeMnd `  (
I  X.  2o ) ) ) --> X ) )
174172, 173mpbird 247 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  ) : W --> X )
175 wrdco 13577 . . . . . . . 8  |-  ( ( ( (varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  W  /\  ( w  e.  W  |->  [ w ]  .~  ) : W --> X )  ->  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) )  e. Word  X
)
176164, 174, 175syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) )  e. Word  X )
1772gsumwmhm 17382 . . . . . . 7  |-  ( ( K  e.  ( G MndHom  H )  /\  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) )  e. Word  X )  ->  ( K `  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) )  =  ( H  gsumg  ( K  o.  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) ) )
178158, 176, 177syl2anc 693 . . . . . 6  |-  ( (
ph  /\  t  e.  W )  ->  ( K `  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) ) ) )  =  ( H  gsumg  ( K  o.  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) ) ) ) )
179155, 156, 1783eqtr4d 2666 . . . . 5  |-  ( (
ph  /\  t  e.  W )  ->  ( E `  [ t ]  .~  )  =  ( K `  ( G 
gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) ) )
18020, 141frmdgsum 17399 . . . . . . . . 9  |-  ( ( ( I  X.  2o )  e.  _V  /\  t  e. Word  ( I  X.  2o ) )  ->  (
(freeMnd `  ( I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) )  =  t )
181140, 49, 180syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
(freeMnd `  ( I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) )  =  t )
182181fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  ) `  ( (freeMnd `  ( I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  ( ( w  e.  W  |->  [ w ]  .~  ) `  t ) )
183 wrdco 13577 . . . . . . . . . 10  |-  ( ( t  e. Word  ( I  X.  2o )  /\  (varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) -->Word  ( I  X.  2o ) )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word Word  ( I  X.  2o ) )
18449, 160, 183syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word Word  ( I  X.  2o ) )
18532adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  ( Base `  (freeMnd `  (
I  X.  2o ) ) )  = Word  (
I  X.  2o ) )
186 wrdeq 13327 . . . . . . . . . 10  |-  ( (
Base `  (freeMnd `  (
I  X.  2o ) ) )  = Word  (
I  X.  2o )  -> Word  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  = Word Word  ( I  X.  2o ) )
187185, 186syl 17 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  -> Word  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  = Word Word  ( I  X.  2o ) )
188184, 187eleqtrrd 2704 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
18930gsumwmhm 17382 . . . . . . . 8  |-  ( ( ( w  e.  W  |->  [ w ]  .~  )  e.  ( (freeMnd `  ( I  X.  2o ) ) MndHom  G )  /\  ( (varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )  ->  ( (
w  e.  W  |->  [ w ]  .~  ) `  ( (freeMnd `  (
I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) )
190170, 188, 189syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  ) `  ( (freeMnd `  ( I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) )
19112, 13efger 18131 . . . . . . . . 9  |-  .~  Er  W
192191a1i 11 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  .~  Er  W )
193 fvex 6201 . . . . . . . . . 10  |-  (  _I 
` Word  ( I  X.  2o ) )  e.  _V
19412, 193eqeltri 2697 . . . . . . . . 9  |-  W  e. 
_V
195194a1i 11 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  W  e.  _V )
196 eqid 2622 . . . . . . . 8  |-  ( w  e.  W  |->  [ w ]  .~  )  =  ( w  e.  W  |->  [ w ]  .~  )
197192, 195, 196divsfval 16207 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  ) `  t )  =  [ t ]  .~  )
198182, 190, 1973eqtr3d 2664 . . . . . 6  |-  ( (
ph  /\  t  e.  W )  ->  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  [ t ]  .~  )
199198fveq2d 6195 . . . . 5  |-  ( (
ph  /\  t  e.  W )  ->  ( K `  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) ) ) )  =  ( K `  [
t ]  .~  )
)
200179, 199eqtr2d 2657 . . . 4  |-  ( (
ph  /\  t  e.  W )  ->  ( K `  [ t ]  .~  )  =  ( E `  [ t ]  .~  ) )
20143, 46, 200ectocld 7814 . . 3  |-  ( (
ph  /\  a  e.  ( W /.  .~  )
)  ->  ( K `  a )  =  ( E `  a ) )
20242, 201syldan 487 . 2  |-  ( (
ph  /\  a  e.  X )  ->  ( K `  a )  =  ( E `  a ) )
2036, 19, 202eqfnfvd 6314 1  |-  ( ph  ->  K  =  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ifcif 4086   {cpr 4179   <.cop 4183    |-> cmpt 4729    _I cid 5023    X. cxp 5112   ran crn 5115    o. ccom 5118   Oncon0 5723    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554    Er wer 7739   [cec 7740   /.cqs 7741   0cc0 9936  ..^cfzo 12465   #chash 13117  Word cword 13291   <"cs1 13294   Basecbs 15857    gsumg cgsu 16101    /.s cqus 16165   MndHom cmhm 17333  freeMndcfrmd 17384  varFMndcvrmd 17385   Grpcgrp 17422   invgcminusg 17423    GrpHom cghm 17657   ~FG cefg 18119  freeGrpcfrgp 18120  varFGrpcvrgp 18121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-0g 16102  df-gsum 16103  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-frmd 17386  df-vrmd 17387  df-grp 17425  df-minusg 17426  df-ghm 17658  df-efg 18122  df-frgp 18123  df-vrgp 18124
This theorem is referenced by:  frgpup3  18191
  Copyright terms: Public domain W3C validator