MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprd Structured version   Visualization version   Unicode version

Theorem dmdprd 18397
Description: The domain of definition of the internal direct product, which states that  S is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dmdprd.z  |-  Z  =  (Cntz `  G )
dmdprd.0  |-  .0.  =  ( 0g `  G )
dmdprd.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
Assertion
Ref Expression
dmdprd  |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( G dom DProd  S  <-> 
( G  e.  Grp  /\  S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) ) ) )
Distinct variable groups:    x, y, G    x, I, y    x, S, y    x, V, y
Allowed substitution hints:    K( x, y)    .0. ( x, y)    Z( x, y)

Proof of Theorem dmdprd
Dummy variables  g  h  f  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . . . . 5  |-  ( S  e.  { h  |  ( h : dom  h
--> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) }  ->  S  e.  _V )
21a1i 11 . . . 4  |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( S  e. 
{ h  |  ( h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) }  ->  S  e.  _V ) )
3 fex 6490 . . . . . . 7  |-  ( ( S : I --> (SubGrp `  G )  /\  I  e.  V )  ->  S  e.  _V )
43expcom 451 . . . . . 6  |-  ( I  e.  V  ->  ( S : I --> (SubGrp `  G )  ->  S  e.  _V ) )
54adantr 481 . . . . 5  |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( S :
I --> (SubGrp `  G )  ->  S  e.  _V )
)
65adantrd 484 . . . 4  |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( ( S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) )  ->  S  e.  _V ) )
7 df-sbc 3436 . . . . . 6  |-  ( [. S  /  h ]. (
h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) )  <->  S  e.  { h  |  ( h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  {
x } ) ( h `  x ) 
C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) } )
8 simpr 477 . . . . . . 7  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  S  e. 
_V )  ->  S  e.  _V )
9 simpr 477 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  h  =  S )
109dmeqd 5326 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  dom  h  =  dom  S )
11 simplr 792 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  dom  S  =  I )
1210, 11eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  dom  h  =  I )
139, 12feq12d 6033 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  (
h : dom  h --> (SubGrp `  G )  <->  S :
I --> (SubGrp `  G )
) )
1412difeq1d 3727 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  ( dom  h  \  { x } )  =  ( I  \  { x } ) )
159fveq1d 6193 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  (
h `  x )  =  ( S `  x ) )
169fveq1d 6193 . . . . . . . . . . . . . 14  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  (
h `  y )  =  ( S `  y ) )
1716fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  ( Z `  ( h `  y ) )  =  ( Z `  ( S `  y )
) )
1815, 17sseq12d 3634 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  (
( h `  x
)  C_  ( Z `  ( h `  y
) )  <->  ( S `  x )  C_  ( Z `  ( S `  y ) ) ) )
1914, 18raleqbidv 3152 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  ( A. y  e.  ( dom  h  \  { x } ) ( h `
 x )  C_  ( Z `  ( h `
 y ) )  <->  A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) ) ) )
209, 14imaeq12d 5467 . . . . . . . . . . . . . . 15  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  (
h " ( dom  h  \  { x } ) )  =  ( S " (
I  \  { x } ) ) )
2120unieqd 4446 . . . . . . . . . . . . . 14  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  U. (
h " ( dom  h  \  { x } ) )  = 
U. ( S "
( I  \  {
x } ) ) )
2221fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  ( K `  U. ( h
" ( dom  h  \  { x } ) ) )  =  ( K `  U. ( S " ( I  \  { x } ) ) ) )
2315, 22ineq12d 3815 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  ( ( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) ) )
2423eqeq1d 2624 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  (
( ( h `  x )  i^i  ( K `  U. ( h
" ( dom  h  \  { x } ) ) ) )  =  {  .0.  }  <->  ( ( S `  x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) )
2519, 24anbi12d 747 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  (
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } )  <->  ( A. y  e.  ( I  \  { x } ) ( S `  x
)  C_  ( Z `  ( S `  y
) )  /\  (
( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) )  =  {  .0.  } ) ) )
2612, 25raleqbidv 3152 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  ( A. x  e.  dom  h ( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } )  <->  A. x  e.  I  ( A. y  e.  ( I  \  { x } ) ( S `  x
)  C_  ( Z `  ( S `  y
) )  /\  (
( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) )  =  {  .0.  } ) ) )
2713, 26anbi12d 747 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  (
( h : dom  h
--> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) )  <->  ( S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) ) ) )
2827adantlr 751 . . . . . . 7  |-  ( ( ( ( I  e.  V  /\  dom  S  =  I )  /\  S  e.  _V )  /\  h  =  S )  ->  (
( h : dom  h
--> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) )  <->  ( S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) ) ) )
298, 28sbcied 3472 . . . . . 6  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  S  e. 
_V )  ->  ( [. S  /  h ]. ( h : dom  h
--> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) )  <->  ( S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) ) ) )
307, 29syl5bbr 274 . . . . 5  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  S  e. 
_V )  ->  ( S  e.  { h  |  ( h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  {
x } ) ( h `  x ) 
C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) }  <-> 
( S : I --> (SubGrp `  G )  /\  A. x  e.  I 
( A. y  e.  ( I  \  {
x } ) ( S `  x ) 
C_  ( Z `  ( S `  y ) )  /\  ( ( S `  x )  i^i  ( K `  U. ( S " (
I  \  { x } ) ) ) )  =  {  .0.  } ) ) ) )
3130ex 450 . . . 4  |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( S  e. 
_V  ->  ( S  e. 
{ h  |  ( h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) }  <-> 
( S : I --> (SubGrp `  G )  /\  A. x  e.  I 
( A. y  e.  ( I  \  {
x } ) ( S `  x ) 
C_  ( Z `  ( S `  y ) )  /\  ( ( S `  x )  i^i  ( K `  U. ( S " (
I  \  { x } ) ) ) )  =  {  .0.  } ) ) ) ) )
322, 6, 31pm5.21ndd 369 . . 3  |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( S  e. 
{ h  |  ( h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) }  <-> 
( S : I --> (SubGrp `  G )  /\  A. x  e.  I 
( A. y  e.  ( I  \  {
x } ) ( S `  x ) 
C_  ( Z `  ( S `  y ) )  /\  ( ( S `  x )  i^i  ( K `  U. ( S " (
I  \  { x } ) ) ) )  =  {  .0.  } ) ) ) )
3332anbi2d 740 . 2  |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( ( G  e.  Grp  /\  S  e.  { h  |  ( h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) } )  <->  ( G  e. 
Grp  /\  ( S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) ) ) ) )
34 df-br 4654 . . 3  |-  ( G dom DProd  S  <->  <. G ,  S >.  e.  dom DProd  )
35 fvex 6201 . . . . . . . . . . 11  |-  ( s `
 x )  e. 
_V
3635rgenw 2924 . . . . . . . . . 10  |-  A. x  e.  dom  s ( s `
 x )  e. 
_V
37 ixpexg 7932 . . . . . . . . . 10  |-  ( A. x  e.  dom  s ( s `  x )  e.  _V  ->  X_ x  e.  dom  s ( s `
 x )  e. 
_V )
3836, 37ax-mp 5 . . . . . . . . 9  |-  X_ x  e.  dom  s ( s `
 x )  e. 
_V
3938mptrabex 6488 . . . . . . . 8  |-  ( f  e.  { h  e.  X_ x  e.  dom  s ( s `  x )  |  h finSupp 
( 0g `  g
) }  |->  ( g 
gsumg  f ) )  e. 
_V
4039rnex 7100 . . . . . . 7  |-  ran  (
f  e.  { h  e.  X_ x  e.  dom  s ( s `  x )  |  h finSupp 
( 0g `  g
) }  |->  ( g 
gsumg  f ) )  e. 
_V
4140rgen2w 2925 . . . . . 6  |-  A. g  e.  Grp  A. s  e. 
{ h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) ) } ran  ( f  e. 
{ h  e.  X_ x  e.  dom  s ( s `  x )  |  h finSupp  ( 0g `  g ) }  |->  ( g  gsumg  f ) )  e. 
_V
42 df-dprd 18394 . . . . . . 7  |- DProd  =  ( g  e.  Grp , 
s  e.  { h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  {
x } ) ( h `  x ) 
C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) ) } 
|->  ran  ( f  e. 
{ h  e.  X_ x  e.  dom  s ( s `  x )  |  h finSupp  ( 0g `  g ) }  |->  ( g  gsumg  f ) ) )
4342fmpt2x 7236 . . . . . 6  |-  ( A. g  e.  Grp  A. s  e.  { h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) ) } ran  ( f  e. 
{ h  e.  X_ x  e.  dom  s ( s `  x )  |  h finSupp  ( 0g `  g ) }  |->  ( g  gsumg  f ) )  e. 
_V 
<-> DProd  : U_ g  e.  Grp  ( { g }  X.  { h  |  (
h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) ) } ) --> _V )
4441, 43mpbi 220 . . . . 5  |- DProd  : U_ g  e.  Grp  ( { g }  X.  {
h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  {
x } ) ( h `  x ) 
C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) ) } ) --> _V
4544fdmi 6052 . . . 4  |-  dom DProd  =  U_ g  e.  Grp  ( { g }  X.  {
h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  {
x } ) ( h `  x ) 
C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) ) } )
4645eleq2i 2693 . . 3  |-  ( <. G ,  S >.  e. 
dom DProd 
<-> 
<. G ,  S >.  e. 
U_ g  e.  Grp  ( { g }  X.  { h  |  (
h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) ) } ) )
47 fveq2 6191 . . . . . . 7  |-  ( g  =  G  ->  (SubGrp `  g )  =  (SubGrp `  G ) )
4847feq3d 6032 . . . . . 6  |-  ( g  =  G  ->  (
h : dom  h --> (SubGrp `  g )  <->  h : dom  h --> (SubGrp `  G )
) )
49 fveq2 6191 . . . . . . . . . . . 12  |-  ( g  =  G  ->  (Cntz `  g )  =  (Cntz `  G ) )
50 dmdprd.z . . . . . . . . . . . 12  |-  Z  =  (Cntz `  G )
5149, 50syl6eqr 2674 . . . . . . . . . . 11  |-  ( g  =  G  ->  (Cntz `  g )  =  Z )
5251fveq1d 6193 . . . . . . . . . 10  |-  ( g  =  G  ->  (
(Cntz `  g ) `  ( h `  y
) )  =  ( Z `  ( h `
 y ) ) )
5352sseq2d 3633 . . . . . . . . 9  |-  ( g  =  G  ->  (
( h `  x
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  <->  ( h `  x )  C_  ( Z `  ( h `  y ) ) ) )
5453ralbidv 2986 . . . . . . . 8  |-  ( g  =  G  ->  ( A. y  e.  ( dom  h  \  { x } ) ( h `
 x )  C_  ( (Cntz `  g ) `  ( h `  y
) )  <->  A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) ) ) )
5547fveq2d 6195 . . . . . . . . . . . 12  |-  ( g  =  G  ->  (mrCls `  (SubGrp `  g )
)  =  (mrCls `  (SubGrp `  G ) ) )
56 dmdprd.k . . . . . . . . . . . 12  |-  K  =  (mrCls `  (SubGrp `  G
) )
5755, 56syl6eqr 2674 . . . . . . . . . . 11  |-  ( g  =  G  ->  (mrCls `  (SubGrp `  g )
)  =  K )
5857fveq1d 6193 . . . . . . . . . 10  |-  ( g  =  G  ->  (
(mrCls `  (SubGrp `  g
) ) `  U. ( h " ( dom  h  \  { x } ) ) )  =  ( K `  U. ( h " ( dom  h  \  { x } ) ) ) )
5958ineq2d 3814 . . . . . . . . 9  |-  ( g  =  G  ->  (
( h `  x
)  i^i  ( (mrCls `  (SubGrp `  g )
) `  U. ( h
" ( dom  h  \  { x } ) ) ) )  =  ( ( h `  x )  i^i  ( K `  U. ( h
" ( dom  h  \  { x } ) ) ) ) )
60 fveq2 6191 . . . . . . . . . . 11  |-  ( g  =  G  ->  ( 0g `  g )  =  ( 0g `  G
) )
61 dmdprd.0 . . . . . . . . . . 11  |-  .0.  =  ( 0g `  G )
6260, 61syl6eqr 2674 . . . . . . . . . 10  |-  ( g  =  G  ->  ( 0g `  g )  =  .0.  )
6362sneqd 4189 . . . . . . . . 9  |-  ( g  =  G  ->  { ( 0g `  g ) }  =  {  .0.  } )
6459, 63eqeq12d 2637 . . . . . . . 8  |-  ( g  =  G  ->  (
( ( h `  x )  i^i  (
(mrCls `  (SubGrp `  g
) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) }  <->  ( ( h `
 x )  i^i  ( K `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  {  .0.  } ) )
6554, 64anbi12d 747 . . . . . . 7  |-  ( g  =  G  ->  (
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } )  <->  ( A. y  e.  ( dom  h  \  { x }
) ( h `  x )  C_  ( Z `  ( h `  y ) )  /\  ( ( h `  x )  i^i  ( K `  U. ( h
" ( dom  h  \  { x } ) ) ) )  =  {  .0.  } ) ) )
6665ralbidv 2986 . . . . . 6  |-  ( g  =  G  ->  ( A. x  e.  dom  h ( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } )  <->  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  { x }
) ( h `  x )  C_  ( Z `  ( h `  y ) )  /\  ( ( h `  x )  i^i  ( K `  U. ( h
" ( dom  h  \  { x } ) ) ) )  =  {  .0.  } ) ) )
6748, 66anbi12d 747 . . . . 5  |-  ( g  =  G  ->  (
( h : dom  h
--> (SubGrp `  g )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) )  <->  ( h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  {
x } ) ( h `  x ) 
C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) ) )
6867abbidv 2741 . . . 4  |-  ( g  =  G  ->  { h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  {
x } ) ( h `  x ) 
C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) ) }  =  { h  |  ( h : dom  h
--> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) } )
6968opeliunxp2 5260 . . 3  |-  ( <. G ,  S >.  e. 
U_ g  e.  Grp  ( { g }  X.  { h  |  (
h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) ) } )  <->  ( G  e. 
Grp  /\  S  e.  { h  |  ( h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  {
x } ) ( h `  x ) 
C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) } ) )
7034, 46, 693bitri 286 . 2  |-  ( G dom DProd  S  <->  ( G  e. 
Grp  /\  S  e.  { h  |  ( h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  {
x } ) ( h `  x ) 
C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) } ) )
71 3anass 1042 . 2  |-  ( ( G  e.  Grp  /\  S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) )  <->  ( G  e.  Grp  /\  ( S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) ) ) )
7233, 70, 713bitr4g 303 1  |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( G dom DProd  S  <-> 
( G  e.  Grp  /\  S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   {crab 2916   _Vcvv 3200   [.wsbc 3435    \ cdif 3571    i^i cin 3573    C_ wss 3574   {csn 4177   <.cop 4183   U.cuni 4436   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   X_cixp 7908   finSupp cfsupp 8275   0gc0g 16100    gsumg cgsu 16101  mrClscmrc 16243   Grpcgrp 17422  SubGrpcsubg 17588  Cntzccntz 17748   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-ixp 7909  df-dprd 18394
This theorem is referenced by:  dmdprdd  18398  dprdgrp  18404  dprdf  18405  dprdcntz  18407  dprddisj  18408  dprdres  18427  subgdmdprd  18433
  Copyright terms: Public domain W3C validator