HomeHome Metamath Proof Explorer
Theorem List (p. 184 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 18301-18400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremgiccyg 18301 Cyclicity is a group property, i.e. it is preserved under isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.)
 |-  ( G  ~=g𝑔  H  ->  ( G  e. CycGrp  ->  H  e. CycGrp ) )
 
Theoremcycsubgcyg 18302* The cyclic subgroup generated by  A is a cyclic group. (Contributed by Mario Carneiro, 24-Apr-2016.)
 |-  X  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  S  =  ran  ( x  e.  ZZ  |->  ( x  .x.  A ) )   =>    |-  ( ( G  e.  Grp  /\  A  e.  X ) 
 ->  ( Gs  S )  e. CycGrp )
 
Theoremcycsubgcyg2 18303 The cyclic subgroup generated by  A is a cyclic group. (Contributed by Mario Carneiro, 27-Apr-2016.)
 |-  B  =  ( Base `  G )   &    |-  K  =  (mrCls `  (SubGrp `  G )
 )   =>    |-  ( ( G  e.  Grp  /\  A  e.  B ) 
 ->  ( Gs  ( K `  { A } ) )  e. CycGrp )
 
10.3.3  Group sum operation
 
Theoremgsumval3a 18304* Value of the group sum operation over an index set with finite support. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by AV, 29-May-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  Z  =  (Cntz `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )   &    |-  ( ph  ->  W  e.  Fin )   &    |-  ( ph  ->  W  =/=  (/) )   &    |-  W  =  ( F supp  .0.  )   &    |-  ( ph  ->  -.  A  e.  ran  ... )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  (
 iota x E. f ( f : ( 1
 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
 .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) )
 
Theoremgsumval3eu 18305* The group sum as defined in gsumval3a 18304 is uniquely defined. (Contributed by Mario Carneiro, 8-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  Z  =  (Cntz `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )   &    |-  ( ph  ->  W  e.  Fin )   &    |-  ( ph  ->  W  =/=  (/) )   &    |-  ( ph  ->  W  C_  A )   =>    |-  ( ph  ->  E! x E. f ( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
 .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) )
 
Theoremgsumval3lem1 18306* Lemma 1 for gsumval3 18308. (Contributed by AV, 31-May-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  Z  =  (Cntz `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  H : ( 1 ... M )
 -1-1-> A )   &    |-  ( ph  ->  ( F supp  .0.  )  C_  ran  H )   &    |-  W  =  ( ( F  o.  H ) supp 
 .0.  )   =>    |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ...  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W ) ) ,  W ) ) )  ->  ( H  o.  f
 ) : ( 1
 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
 
Theoremgsumval3lem2 18307* Lemma 2 for gsumval3 18308. (Contributed by AV, 31-May-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  Z  =  (Cntz `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  H : ( 1 ... M )
 -1-1-> A )   &    |-  ( ph  ->  ( F supp  .0.  )  C_  ran  H )   &    |-  W  =  ( ( F  o.  H ) supp 
 .0.  )   =>    |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ...  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W ) ) ,  W ) ) )  ->  ( G  gsumg 
 F )  =  ( 
 seq 1 (  .+  ,  ( F  o.  ( H  o.  f ) ) ) `  ( # `  W ) ) )
 
Theoremgsumval3 18308 Value of the group sum operation over an arbitrary finite set. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 31-May-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  Z  =  (Cntz `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  H : ( 1 ... M )
 -1-1-> A )   &    |-  ( ph  ->  ( F supp  .0.  )  C_  ran  H )   &    |-  W  =  ( ( F  o.  H ) supp 
 .0.  )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( 
 seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) )
 
Theoremgsumcllem 18309* Lemma for gsumcl 18316 and related theorems. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  Z  e.  U )   &    |-  ( ph  ->  ( F supp  Z )  C_  W )   =>    |-  ( ( ph  /\  W  =  (/) )  ->  F  =  ( k  e.  A  |->  Z ) )
 
Theoremgsumzres 18310 Extend a finite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  Z  =  (Cntz `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ran 
 F  C_  ( Z ` 
 ran  F ) )   &    |-  ( ph  ->  ( F supp  .0.  )  C_  W )   &    |-  ( ph  ->  F finSupp  .0.  )   =>    |-  ( ph  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G 
 gsumg  F ) )
 
Theoremgsumzcl2 18311 Closure of a finite group sum. This theorem has a weaker hypothesis than gsumzcl 18312, because it is not required that  F is a function (actually, the hypothesis always holds for any proper class  F). (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 1-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  Z  =  (Cntz `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ran 
 F  C_  ( Z ` 
 ran  F ) )   &    |-  ( ph  ->  ( F supp  .0.  )  e.  Fin )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  e.  B )
 
Theoremgsumzcl 18312 Closure of a finite group sum. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 1-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  Z  =  (Cntz `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ran 
 F  C_  ( Z ` 
 ran  F ) )   &    |-  ( ph  ->  F finSupp  .0.  )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  e.  B )
 
Theoremgsumzf1o 18313 Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 2-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  Z  =  (Cntz `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ran 
 F  C_  ( Z ` 
 ran  F ) )   &    |-  ( ph  ->  F finSupp  .0.  )   &    |-  ( ph  ->  H : C -1-1-onto-> A )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( G  gsumg  ( F  o.  H ) ) )
 
Theoremgsumres 18314 Extend a finite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ( F supp  .0.  )  C_  W )   &    |-  ( ph  ->  F finSupp  .0.  )   =>    |-  ( ph  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G 
 gsumg  F ) )
 
Theoremgsumcl2 18315 Closure of a finite group sum. This theorem has a weaker hypothesis than gsumcl 18316, because it is not required that  F is a function (actually, the hypothesis always holds for any proper class  F). (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ( F supp  .0.  )  e.  Fin )   =>    |-  ( ph  ->  ( G  gsumg  F )  e.  B )
 
Theoremgsumcl 18316 Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  F finSupp  .0.  )   =>    |-  ( ph  ->  ( G  gsumg  F )  e.  B )
 
Theoremgsumf1o 18317 Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  F finSupp  .0.  )   &    |-  ( ph  ->  H : C -1-1-onto-> A )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( G  gsumg  ( F  o.  H ) ) )
 
Theoremgsumzsubmcl 18318 Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.)
 |- 
 .0.  =  ( 0g `  G )   &    |-  Z  =  (Cntz `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  S  e.  (SubMnd `  G )
 )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )   &    |-  ( ph  ->  F finSupp  .0.  )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  e.  S )
 
Theoremgsumsubmcl 18319 Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.)
 |- 
 .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  S  e.  (SubMnd `  G ) )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  F finSupp  .0.  )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  e.  S )
 
Theoremgsumsubgcl 18320 Closure of a group sum in a subgroup. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 3-Jun-2019.)
 |- 
 .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  S  e.  (SubGrp `  G ) )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  F finSupp  .0.  )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  e.  S )
 
Theoremgsumzaddlem 18321* The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  Z  =  (Cntz `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F finSupp  .0.  )   &    |-  ( ph  ->  H finSupp  .0.  )   &    |-  W  =  ( ( F  u.  H ) supp  .0.  )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  H : A
 --> B )   &    |-  ( ph  ->  ran 
 F  C_  ( Z ` 
 ran  F ) )   &    |-  ( ph  ->  ran  H  C_  ( Z `  ran  H ) )   &    |-  ( ph  ->  ran  ( F  oF  .+  H )  C_  ( Z `  ran  ( F  oF  .+  H ) ) )   &    |-  (
 ( ph  /\  ( x 
 C_  A  /\  k  e.  ( A  \  x ) ) )  ->  ( F `  k )  e.  ( Z `  { ( G  gsumg  ( H  |`  x ) ) }
 ) )   =>    |-  ( ph  ->  ( G  gsumg  ( F  oF  .+  H ) )  =  ( ( G  gsumg  F ) 
 .+  ( G  gsumg  H ) ) )
 
Theoremgsumzadd 18322 The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  Z  =  (Cntz `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F finSupp  .0.  )   &    |-  ( ph  ->  H finSupp  .0.  )   &    |-  ( ph  ->  S  e.  (SubMnd `  G ) )   &    |-  ( ph  ->  S 
 C_  ( Z `  S ) )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  H : A --> S )   =>    |-  ( ph  ->  ( G  gsumg  ( F  oF  .+  H ) )  =  (
 ( G  gsumg 
 F )  .+  ( G  gsumg 
 H ) ) )
 
Theoremgsumadd 18323 The sum of two group sums. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  H : A --> B )   &    |-  ( ph  ->  F finSupp  .0.  )   &    |-  ( ph  ->  H finSupp  .0.  )   =>    |-  ( ph  ->  ( G  gsumg  ( F  oF  .+  H ) )  =  ( ( G  gsumg  F ) 
 .+  ( G  gsumg  H ) ) )
 
Theoremgsummptfsadd 18324* The sum of two group sums expressed as mappings. (Contributed by AV, 4-Apr-2019.) (Revised by AV, 9-Jul-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  (
 ( ph  /\  x  e.  A )  ->  C  e.  B )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  D  e.  B )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  C ) )   &    |-  ( ph  ->  H  =  ( x  e.  A  |->  D ) )   &    |-  ( ph  ->  F finSupp  .0.  )   &    |-  ( ph  ->  H finSupp  .0.  )   =>    |-  ( ph  ->  ( G  gsumg  ( x  e.  A  |->  ( C  .+  D ) ) )  =  ( ( G  gsumg 
 F )  .+  ( G  gsumg 
 H ) ) )
 
Theoremgsummptfidmadd 18325* The sum of two group sums expressed as mappings with finite domain. (Contributed by AV, 23-Jul-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  x  e.  A )  ->  C  e.  B )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  D  e.  B )   &    |-  F  =  ( x  e.  A  |->  C )   &    |-  H  =  ( x  e.  A  |->  D )   =>    |-  ( ph  ->  ( G  gsumg  ( x  e.  A  |->  ( C  .+  D ) ) )  =  ( ( G  gsumg 
 F )  .+  ( G  gsumg 
 H ) ) )
 
Theoremgsummptfidmadd2 18326* The sum of two group sums expressed as mappings with finite domain, using a function operation. (Contributed by AV, 23-Jul-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  x  e.  A )  ->  C  e.  B )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  D  e.  B )   &    |-  F  =  ( x  e.  A  |->  C )   &    |-  H  =  ( x  e.  A  |->  D )   =>    |-  ( ph  ->  ( G  gsumg  ( F  oF  .+  H ) )  =  ( ( G  gsumg  F ) 
 .+  ( G  gsumg  H ) ) )
 
Theoremgsumzsplit 18327 Split a group sum into two parts. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  Z  =  (Cntz `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )   &    |-  ( ph  ->  F finSupp  .0.  )   &    |-  ( ph  ->  ( C  i^i  D )  =  (/) )   &    |-  ( ph  ->  A  =  ( C  u.  D ) )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( ( G  gsumg  ( F  |`  C ) )  .+  ( G 
 gsumg  ( F  |`  D ) ) ) )
 
Theoremgsumsplit 18328 Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 5-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  F finSupp  .0.  )   &    |-  ( ph  ->  ( C  i^i  D )  =  (/) )   &    |-  ( ph  ->  A  =  ( C  u.  D ) )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( ( G  gsumg  ( F  |`  C ) )  .+  ( G 
 gsumg  ( F  |`  D ) ) ) )
 
Theoremgsumsplit2 18329* Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 5-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  (
 ( ph  /\  k  e.  A )  ->  X  e.  B )   &    |-  ( ph  ->  ( k  e.  A  |->  X ) finSupp  .0.  )   &    |-  ( ph  ->  ( C  i^i  D )  =  (/) )   &    |-  ( ph  ->  A  =  ( C  u.  D ) )   =>    |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  X ) )  =  ( ( G  gsumg  ( k  e.  C  |->  X ) )  .+  ( G 
 gsumg  ( k  e.  D  |->  X ) ) ) )
 
Theoremgsummptfidmsplit 18330* Split a group sum expressed as mapping with a finite domain into two parts. (Contributed by AV, 23-Jul-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  Y  e.  B )   &    |-  ( ph  ->  ( C  i^i  D )  =  (/) )   &    |-  ( ph  ->  A  =  ( C  u.  D ) )   =>    |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  Y ) )  =  ( ( G  gsumg  ( k  e.  C  |->  Y ) )  .+  ( G 
 gsumg  ( k  e.  D  |->  Y ) ) ) )
 
Theoremgsummptfidmsplitres 18331* Split a group sum expressed as mapping with a finite domain into two parts using restrictions. (Contributed by AV, 23-Jul-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  Y  e.  B )   &    |-  ( ph  ->  ( C  i^i  D )  =  (/) )   &    |-  ( ph  ->  A  =  ( C  u.  D ) )   &    |-  F  =  ( k  e.  A  |->  Y )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( ( G  gsumg  ( F  |`  C ) )  .+  ( G 
 gsumg  ( F  |`  D ) ) ) )
 
Theoremgsummptfzsplit 18332* Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, extracting a singleton from the right. (Contributed by AV, 25-Oct-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 )
 ) )  ->  Y  e.  B )   =>    |-  ( ph  ->  ( G  gsumg  ( k  e.  (
 0 ... ( N  +  1 ) )  |->  Y ) )  =  ( ( G  gsumg  ( k  e.  (
 0 ... N )  |->  Y ) )  .+  ( G  gsumg  ( k  e.  {
 ( N  +  1 ) }  |->  Y ) ) ) )
 
Theoremgsummptfzsplitl 18333* Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, , extracting a singleton from the left. (Contributed by AV, 7-Nov-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ( ph  /\  k  e.  ( 0 ... N ) )  ->  Y  e.  B )   =>    |-  ( ph  ->  ( G  gsumg  ( k  e.  (
 0 ... N )  |->  Y ) )  =  ( ( G  gsumg  ( k  e.  (
 1 ... N )  |->  Y ) )  .+  ( G  gsumg  ( k  e.  {
 0 }  |->  Y ) ) ) )
 
Theoremgsumconst 18334* Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  ->  ( G  gsumg  ( k  e.  A  |->  X ) )  =  ( ( # `  A )  .x.  X ) )
 
Theoremgsumconstf 18335* Sum of a constant series. (Contributed by Thierry Arnoux, 5-Jul-2017.)
 |-  F/_ k X   &    |-  B  =  (
 Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  ->  ( G  gsumg  ( k  e.  A  |->  X ) )  =  ( ( # `  A )  .x.  X ) )
 
Theoremgsummptshft 18336* Index shift of a finite group sum over a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  B )   &    |-  ( j  =  ( k  -  K )  ->  A  =  C )   =>    |-  ( ph  ->  ( G  gsumg  ( j  e.  ( M ... N )  |->  A ) )  =  ( G  gsumg  ( k  e.  (
 ( M  +  K ) ... ( N  +  K ) )  |->  C ) ) )
 
Theoremgsumzmhm 18337 Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 6-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  Z  =  (Cntz `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  H  e.  Mnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  K  e.  ( G MndHom  H ) )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  F finSupp  .0.  )   =>    |-  ( ph  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `  ( G  gsumg 
 F ) ) )
 
Theoremgsummhm 18338 Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 6-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  H  e.  Mnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  K  e.  ( G MndHom  H ) )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  F finSupp  .0.  )   =>    |-  ( ph  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `  ( G  gsumg  F ) ) )
 
Theoremgsummhm2 18339* Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  H  e.  Mnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  ( x  e.  B  |->  C )  e.  ( G MndHom  H )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  X  e.  B )   &    |-  ( ph  ->  ( k  e.  A  |->  X ) finSupp  .0.  )   &    |-  ( x  =  X  ->  C  =  D )   &    |-  ( x  =  ( G  gsumg  ( k  e.  A  |->  X ) )  ->  C  =  E )   =>    |-  ( ph  ->  ( H  gsumg  ( k  e.  A  |->  D ) )  =  E )
 
Theoremgsummptmhm 18340* Apply a group homomorphism to a group sum expressed with a mapping. (Contributed by Thierry Arnoux, 7-Sep-2018.) (Revised by AV, 8-Sep-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  H  e.  Mnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  K  e.  ( G MndHom  H ) )   &    |-  (
 ( ph  /\  x  e.  A )  ->  C  e.  B )   &    |-  ( ph  ->  ( x  e.  A  |->  C ) finSupp  .0.  )   =>    |-  ( ph  ->  ( H  gsumg  ( x  e.  A  |->  ( K `  C ) ) )  =  ( K `  ( G 
 gsumg  ( x  e.  A  |->  C ) ) ) )
 
Theoremgsummulglem 18341* Lemma for gsummulg 18342 and gsummulgz 18343. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 6-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .x. 
 =  (.g `  G )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  k  e.  A )  ->  X  e.  B )   &    |-  ( ph  ->  ( k  e.  A  |->  X ) finSupp  .0.  )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  ( G  e.  Abel  \/  N  e.  NN0 )
 )   =>    |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  ( N  .x.  X ) ) )  =  ( N  .x.  ( G  gsumg  (
 k  e.  A  |->  X ) ) ) )
 
Theoremgsummulg 18342* Nonnegative multiple of a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 6-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .x. 
 =  (.g `  G )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  k  e.  A )  ->  X  e.  B )   &    |-  ( ph  ->  ( k  e.  A  |->  X ) finSupp  .0.  )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  ( N  .x.  X ) ) )  =  ( N  .x.  ( G  gsumg  (
 k  e.  A  |->  X ) ) ) )
 
Theoremgsummulgz 18343* Integer multiple of a group sum. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 6-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .x. 
 =  (.g `  G )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  k  e.  A )  ->  X  e.  B )   &    |-  ( ph  ->  ( k  e.  A  |->  X ) finSupp  .0.  )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  ( N  .x.  X ) ) )  =  ( N  .x.  ( G  gsumg  (
 k  e.  A  |->  X ) ) ) )
 
Theoremgsumzoppg 18344 The opposite of a group sum is the same as the original. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  Z  =  (Cntz `  G )   &    |-  O  =  (oppg `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ran 
 F  C_  ( Z ` 
 ran  F ) )   &    |-  ( ph  ->  F finSupp  .0.  )   =>    |-  ( ph  ->  ( O  gsumg 
 F )  =  ( G  gsumg 
 F ) )
 
Theoremgsumzinv 18345 Inverse of a group sum. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  Z  =  (Cntz `  G )   &    |-  I  =  ( invg `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ran 
 F  C_  ( Z ` 
 ran  F ) )   &    |-  ( ph  ->  F finSupp  .0.  )   =>    |-  ( ph  ->  ( G  gsumg  ( I  o.  F ) )  =  ( I `  ( G  gsumg  F ) ) )
 
Theoremgsuminv 18346 Inverse of a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 4-May-2015.) (Revised by AV, 6-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  I  =  ( invg `
  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  F finSupp  .0.  )   =>    |-  ( ph  ->  ( G  gsumg  ( I  o.  F ) )  =  ( I `  ( G  gsumg 
 F ) ) )
 
Theoremgsummptfidminv 18347* Inverse of a group sum expressed as mapping with a finite domain. (Contributed by AV, 23-Jul-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  I  =  ( invg `
  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  C  e.  B )   &    |-  F  =  ( x  e.  A  |->  C )   =>    |-  ( ph  ->  ( G  gsumg  ( I  o.  F ) )  =  ( I `  ( G  gsumg  F ) ) )
 
Theoremgsumsub 18348 The difference of two group sums. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 6-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  H : A --> B )   &    |-  ( ph  ->  F finSupp  .0.  )   &    |-  ( ph  ->  H finSupp  .0.  )   =>    |-  ( ph  ->  ( G  gsumg  ( F  oF  .-  H ) )  =  ( ( G  gsumg  F ) 
 .-  ( G  gsumg  H ) ) )
 
Theoremgsummptfssub 18349* The difference of two group sums expressed as mappings. (Contributed by AV, 7-Nov-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  A  e.  V )   &    |-  (
 ( ph  /\  x  e.  A )  ->  C  e.  B )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  D  e.  B )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  C ) )   &    |-  ( ph  ->  H  =  ( x  e.  A  |->  D ) )   &    |-  ( ph  ->  F finSupp  .0.  )   &    |-  ( ph  ->  H finSupp  .0.  )   =>    |-  ( ph  ->  ( G  gsumg  ( x  e.  A  |->  ( C  .-  D ) ) )  =  ( ( G  gsumg 
 F )  .-  ( G  gsumg 
 H ) ) )
 
Theoremgsummptfidmsub 18350* The difference of two group sums expressed as mappings with finite domain. (Contributed by AV, 7-Nov-2019.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  C  e.  B )   &    |-  ( ( ph  /\  x  e.  A )  ->  D  e.  B )   &    |-  F  =  ( x  e.  A  |->  C )   &    |-  H  =  ( x  e.  A  |->  D )   =>    |-  ( ph  ->  ( G  gsumg  ( x  e.  A  |->  ( C  .-  D ) ) )  =  ( ( G  gsumg 
 F )  .-  ( G  gsumg 
 H ) ) )
 
Theoremgsumsnfd 18351* Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  M  e.  V )   &    |-  ( ph  ->  C  e.  B )   &    |-  ( ( ph  /\  k  =  M ) 
 ->  A  =  C )   &    |-  F/ k ph   &    |-  F/_ k C   =>    |-  ( ph  ->  ( G  gsumg  ( k  e.  { M }  |->  A ) )  =  C )
 
Theoremgsumsnd 18352* Group sum of a singleton, deduction form. (Contributed by Thierry Arnoux, 30-Jan-2017.) (Proof shortened by AV, 11-Dec-2019.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  M  e.  V )   &    |-  ( ph  ->  C  e.  B )   &    |-  ( ( ph  /\  k  =  M ) 
 ->  A  =  C )   =>    |-  ( ph  ->  ( G  gsumg  (
 k  e.  { M }  |->  A ) )  =  C )
 
Theoremgsumsnf 18353* Group sum of a singleton, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Proof shortened by AV, 11-Dec-2019.)
 |-  F/_ k C   &    |-  B  =  (
 Base `  G )   &    |-  (
 k  =  M  ->  A  =  C )   =>    |-  ( ( G  e.  Mnd  /\  M  e.  V  /\  C  e.  B )  ->  ( G  gsumg  ( k  e.  { M }  |->  A ) )  =  C )
 
Theoremgsumsn 18354* Group sum of a singleton. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Proof shortened by AV, 11-Dec-2019.)
 |-  B  =  ( Base `  G )   &    |-  ( k  =  M  ->  A  =  C )   =>    |-  ( ( G  e.  Mnd  /\  M  e.  V  /\  C  e.  B )  ->  ( G  gsumg  ( k  e.  { M }  |->  A ) )  =  C )
 
Theoremgsumzunsnd 18355* Append an element to a finite group sum, more general version of gsumunsnd 18357. (Contributed by AV, 7-Oct-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  Z  =  (Cntz `  G )   &    |-  F  =  ( k  e.  ( A  u.  { M }
 )  |->  X )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  ran 
 F  C_  ( Z ` 
 ran  F ) )   &    |-  (
 ( ph  /\  k  e.  A )  ->  X  e.  B )   &    |-  ( ph  ->  M  e.  V )   &    |-  ( ph  ->  -.  M  e.  A )   &    |-  ( ph  ->  Y  e.  B )   &    |-  (
 ( ph  /\  k  =  M )  ->  X  =  Y )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( ( G  gsumg  ( k  e.  A  |->  X ) )  .+  Y ) )
 
Theoremgsumunsnfd 18356* Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 11-Dec-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  X  e.  B )   &    |-  ( ph  ->  M  e.  V )   &    |-  ( ph  ->  -.  M  e.  A )   &    |-  ( ph  ->  Y  e.  B )   &    |-  (
 ( ph  /\  k  =  M )  ->  X  =  Y )   &    |-  F/_ k Y   =>    |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A  u.  { M }
 )  |->  X ) )  =  ( ( G 
 gsumg  ( k  e.  A  |->  X ) )  .+  Y ) )
 
Theoremgsumunsnd 18357* Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 2-Jan-2019.) (Proof shortened by AV, 11-Dec-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  X  e.  B )   &    |-  ( ph  ->  M  e.  V )   &    |-  ( ph  ->  -.  M  e.  A )   &    |-  ( ph  ->  Y  e.  B )   &    |-  (
 ( ph  /\  k  =  M )  ->  X  =  Y )   =>    |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A  u.  { M }
 )  |->  X ) )  =  ( ( G 
 gsumg  ( k  e.  A  |->  X ) )  .+  Y ) )
 
Theoremgsumunsnf 18358* Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Proof shortened by AV, 11-Dec-2019.)
 |-  F/_ k Y   &    |-  B  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  X  e.  B )   &    |-  ( ph  ->  M  e.  V )   &    |-  ( ph  ->  -.  M  e.  A )   &    |-  ( ph  ->  Y  e.  B )   &    |-  (
 k  =  M  ->  X  =  Y )   =>    |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A  u.  { M }
 )  |->  X ) )  =  ( ( G 
 gsumg  ( k  e.  A  |->  X ) )  .+  Y ) )
 
Theoremgsumunsn 18359* Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014.) (Proof shortened by AV, 8-Mar-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  X  e.  B )   &    |-  ( ph  ->  M  e.  V )   &    |-  ( ph  ->  -.  M  e.  A )   &    |-  ( ph  ->  Y  e.  B )   &    |-  (
 k  =  M  ->  X  =  Y )   =>    |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A  u.  { M }
 )  |->  X ) )  =  ( ( G 
 gsumg  ( k  e.  A  |->  X ) )  .+  Y ) )
 
Theoremgsumdifsnd 18360* Extract a summand from a finitely supported group sum. (Contributed by AV, 21-Apr-2019.) (Revised by AV, 28-Jul-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  W )   &    |-  ( ph  ->  (
 k  e.  A  |->  X ) finSupp  ( 0g `  G ) )   &    |-  (
 ( ph  /\  k  e.  A )  ->  X  e.  B )   &    |-  ( ph  ->  M  e.  A )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ( ph  /\  k  =  M )  ->  X  =  Y )   =>    |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  X ) )  =  ( ( G  gsumg  ( k  e.  ( A  \  { M } )  |->  X ) )  .+  Y ) )
 
Theoremgsumpt 18361 Sum of a family that is nonzero at at most one point. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  X  e.  A )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ( F supp  .0.  )  C_  { X }
 )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( F `  X ) )
 
Theoremgsummptf1o 18362* Re-index a finite group sum using a bijection. (Contributed by Thierry Arnoux, 29-Mar-2018.)
 |-  F/_ x H   &    |-  B  =  (
 Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( x  =  E  ->  C  =  H )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  F 
 C_  B )   &    |-  (
 ( ph  /\  x  e.  A )  ->  C  e.  F )   &    |-  ( ( ph  /\  y  e.  D ) 
 ->  E  e.  A )   &    |-  ( ( ph  /\  x  e.  A )  ->  E! y  e.  D  x  =  E )   =>    |-  ( ph  ->  ( G  gsumg  ( x  e.  A  |->  C ) )  =  ( G  gsumg  ( y  e.  D  |->  H ) ) )
 
Theoremgsummptun 18363* Group sum of a disjoint union, whereas sums are expressed as mappings. (Contributed by Thierry Arnoux, 28-Mar-2018.) (Proof shortened by AV, 11-Dec-2019.)
 |-  B  =  ( Base `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  ( ph  ->  W  e. CMnd )   &    |-  ( ph  ->  ( A  u.  C )  e.  Fin )   &    |-  ( ph  ->  ( A  i^i  C )  =  (/) )   &    |-  (
 ( ph  /\  x  e.  ( A  u.  C ) )  ->  D  e.  B )   =>    |-  ( ph  ->  ( W  gsumg  ( x  e.  ( A  u.  C )  |->  D ) )  =  ( ( W  gsumg  ( x  e.  A  |->  D ) )  .+  ( W  gsumg  ( x  e.  C  |->  D ) ) ) )
 
Theoremgsummpt1n0 18364* If only one summand in a finite group sum is not zero, the whole sum equals this summand. More general version of gsummptif1n0 18365. (Contributed by AV, 11-Oct-2019.)
 |- 
 .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  X  e.  I )   &    |-  F  =  ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  )
 )   &    |-  ( ph  ->  A. n  e.  I  A  e.  ( Base `  G )
 )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  [_ X  /  n ]_ A )
 
Theoremgsummptif1n0 18365* If only one summand in a finite group sum is not zero, the whole sum equals this summand. (Contributed by AV, 17-Feb-2019.) (Proof shortened by AV, 11-Oct-2019.)
 |- 
 .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  X  e.  I )   &    |-  F  =  ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  )
 )   &    |-  ( ph  ->  A  e.  ( Base `  G )
 )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  A )
 
Theoremgsummptcl 18366* Closure of a finite group sum over a finite set as map. (Contributed by AV, 29-Dec-2018.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  N  e.  Fin )   &    |-  ( ph  ->  A. i  e.  N  X  e.  B )   =>    |-  ( ph  ->  ( G  gsumg  ( i  e.  N  |->  X ) )  e.  B )
 
Theoremgsummptfif1o 18367* Re-index a finite group sum as map, using a bijection. (Contributed by by AV, 23-Jul-2019.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  N  e.  Fin )   &    |-  ( ph  ->  A. i  e.  N  X  e.  B )   &    |-  F  =  ( i  e.  N  |->  X )   &    |-  ( ph  ->  H : C -1-1-onto-> N )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( G  gsumg  ( F  o.  H ) ) )
 
Theoremgsummptfzcl 18368* Closure of a finite group sum over a finite set of sequential integers as map. (Contributed by AV, 14-Dec-2018.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ph  ->  I  =  ( M ... N ) )   &    |-  ( ph  ->  A. i  e.  I  X  e.  B )   =>    |-  ( ph  ->  ( G  gsumg  ( i  e.  I  |->  X ) )  e.  B )
 
Theoremgsum2dlem1 18369* Lemma 1 for gsum2d 18371. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  Rel 
 A )   &    |-  ( ph  ->  D  e.  W )   &    |-  ( ph  ->  dom  A  C_  D )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  F finSupp  .0.  )   =>    |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A " { j }
 )  |->  ( j F k ) ) )  e.  B )
 
Theoremgsum2dlem2 18370* Lemma for gsum2d 18371. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  Rel 
 A )   &    |-  ( ph  ->  D  e.  W )   &    |-  ( ph  ->  dom  A  C_  D )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  F finSupp  .0.  )   =>    |-  ( ph  ->  ( G  gsumg  ( F  |`  ( A  |`  dom  ( F supp  .0.  ) ) ) )  =  ( G  gsumg  ( j  e.  dom  ( F supp  .0.  )  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
 
Theoremgsum2d 18371* Write a sum over a two-dimensional region as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  Rel 
 A )   &    |-  ( ph  ->  D  e.  W )   &    |-  ( ph  ->  dom  A  C_  D )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  F finSupp  .0.  )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( G  gsumg  ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j }
 )  |->  ( j F k ) ) ) ) ) )
 
Theoremgsum2d2lem 18372* Lemma for gsum2d2 18373: show the function is finitely supported. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  j  e.  A ) 
 ->  C  e.  W )   &    |-  ( ( ph  /\  (
 j  e.  A  /\  k  e.  C )
 )  ->  X  e.  B )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  (
 ( ph  /\  ( ( j  e.  A  /\  k  e.  C )  /\  -.  j U k ) )  ->  X  =  .0.  )   =>    |-  ( ph  ->  (
 j  e.  A ,  k  e.  C  |->  X ) finSupp  .0.  )
 
Theoremgsum2d2 18373* Write a group sum over a two-dimensional region as a double sum. (Note that  C ( j ) is a function of  j.) (Contributed by Mario Carneiro, 28-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  j  e.  A ) 
 ->  C  e.  W )   &    |-  ( ( ph  /\  (
 j  e.  A  /\  k  e.  C )
 )  ->  X  e.  B )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  (
 ( ph  /\  ( ( j  e.  A  /\  k  e.  C )  /\  -.  j U k ) )  ->  X  =  .0.  )   =>    |-  ( ph  ->  ( G  gsumg  ( j  e.  A ,  k  e.  C  |->  X ) )  =  ( G  gsumg  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  X ) ) ) ) )
 
Theoremgsumcom2 18374* Two-dimensional commutation of a group sum. Note that while  A and  D are constants w.r.t.  j ,  k,  C ( j ) and 
E ( k ) are not. (Contributed by Mario Carneiro, 28-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  j  e.  A ) 
 ->  C  e.  W )   &    |-  ( ( ph  /\  (
 j  e.  A  /\  k  e.  C )
 )  ->  X  e.  B )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  (
 ( ph  /\  ( ( j  e.  A  /\  k  e.  C )  /\  -.  j U k ) )  ->  X  =  .0.  )   &    |-  ( ph  ->  D  e.  Y )   &    |-  ( ph  ->  ( ( j  e.  A  /\  k  e.  C )  <->  ( k  e.  D  /\  j  e.  E ) ) )   =>    |-  ( ph  ->  ( G  gsumg  (
 j  e.  A ,  k  e.  C  |->  X ) )  =  ( G 
 gsumg  ( k  e.  D ,  j  e.  E  |->  X ) ) )
 
Theoremgsumxp 18375* Write a group sum over a cartesian product as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  C  e.  W )   &    |-  ( ph  ->  F : ( A  X.  C ) --> B )   &    |-  ( ph  ->  F finSupp  .0.  )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( G  gsumg  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  ( j F k ) ) ) ) ) )
 
Theoremgsumcom 18376* Commute the arguments of a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  C  e.  W )   &    |-  (
 ( ph  /\  ( j  e.  A  /\  k  e.  C ) )  ->  X  e.  B )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  ( ( ph  /\  (
 ( j  e.  A  /\  k  e.  C )  /\  -.  j U k ) )  ->  X  =  .0.  )   =>    |-  ( ph  ->  ( G  gsumg  ( j  e.  A ,  k  e.  C  |->  X ) )  =  ( G  gsumg  ( k  e.  C ,  j  e.  A  |->  X ) ) )
 
Theoremprdsgsum 18377* Finite commutative sums in a product structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.)
 |-  Y  =  ( S
 X_s ( x  e.  I  |->  R ) )   &    |-  B  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  Y )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  J  e.  W )   &    |-  ( ph  ->  S  e.  X )   &    |-  ( ( ph  /\  x  e.  I )  ->  R  e. CMnd )   &    |-  ( ( ph  /\  ( x  e.  I  /\  y  e.  J ) )  ->  U  e.  B )   &    |-  ( ph  ->  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) finSupp  .0.  )   =>    |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) ) )
 
Theorempwsgsum 18378* Finite commutative sums in a power structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.)
 |-  Y  =  ( R 
 ^s  I )   &    |-  B  =  (
 Base `  R )   &    |-  .0.  =  ( 0g `  Y )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  J  e.  W )   &    |-  ( ph  ->  R  e. CMnd )   &    |-  (
 ( ph  /\  ( x  e.  I  /\  y  e.  J ) )  ->  U  e.  B )   &    |-  ( ph  ->  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) finSupp  .0.  )   =>    |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) ) )
 
10.3.4  Group sums over (ranges of) integers
 
Theoremfsfnn0gsumfsffz 18379* Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  F  e.  ( B  ^m  NN0 )
 )   &    |-  ( ph  ->  S  e.  NN0 )   &    |-  H  =  ( F  |`  ( 0 ... S ) )   =>    |-  ( ph  ->  (
 A. x  e.  NN0  ( S  <  x  ->  ( F `  x )  =  .0.  )  ->  ( G  gsumg 
 F )  =  ( G  gsumg 
 H ) ) )
 
Theoremnn0gsumfz 18380* Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  F  e.  ( B  ^m  NN0 )
 )   &    |-  ( ph  ->  F finSupp  .0.  )   =>    |-  ( ph  ->  E. s  e.  NN0  E. f  e.  ( B  ^m  (
 0 ... s ) ) ( f  =  ( F  |`  ( 0 ... s ) )  /\  A. x  e.  NN0  (
 s  <  x  ->  ( F `  x )  =  .0.  )  /\  ( G  gsumg 
 F )  =  ( G  gsumg  f ) ) )
 
Theoremnn0gsumfz0 18381* Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  F  e.  ( B  ^m  NN0 )
 )   &    |-  ( ph  ->  F finSupp  .0.  )   =>    |-  ( ph  ->  E. s  e.  NN0  E. f  e.  ( B  ^m  (
 0 ... s ) ) ( G  gsumg 
 F )  =  ( G  gsumg  f ) )
 
Theoremgsummptnn0fz 18382* A final group sum over a function over the nonnegative integers (given as mapping) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.)
 |- 
 F/ k ph   &    |-  B  =  (
 Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A. k  e.  NN0  C  e.  B )   &    |-  ( ph  ->  S  e.  NN0 )   &    |-  ( ph  ->  A. k  e.  NN0  ( S  <  k  ->  C  =  .0.  ) )   =>    |-  ( ph  ->  ( G  gsumg  ( k  e.  NN0  |->  C ) )  =  ( G  gsumg  ( k  e.  (
 0 ... S )  |->  C ) ) )
 
Theoremgsummptnn0fzv 18383* A final group sum over a function over the nonnegative integers (given as mapping) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A. k  e. 
 NN0  C  e.  B )   &    |-  ( ph  ->  S  e.  NN0 )   &    |-  ( ph  ->  A. k  e.  NN0  ( S  <  k  ->  C  =  .0.  ) )   =>    |-  ( ph  ->  ( G  gsumg  ( k  e.  NN0  |->  C ) )  =  ( G  gsumg  ( k  e.  (
 0 ... S )  |->  C ) ) )
 
Theoremgsummptnn0fzfv 18384* A final group sum over a function over the nonnegative integers (given as mapping to its function values) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  F  e.  ( B  ^m  NN0 )
 )   &    |-  ( ph  ->  S  e.  NN0 )   &    |-  ( ph  ->  A. x  e.  NN0  ( S  <  x  ->  ( F `  x )  =  .0.  ) )   =>    |-  ( ph  ->  ( G  gsumg  ( k  e.  NN0  |->  ( F `  k ) ) )  =  ( G  gsumg  ( k  e.  (
 0 ... S )  |->  ( F `  k ) ) ) )
 
Theoremtelgsumfzslem 18385* Lemma for telgsumfzs 18386 (induction step). (Contributed by AV, 23-Nov-2019.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( y  e.  ( ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... ( ( y  +  1 )  +  1
 ) ) C  e.  B ) )  ->  ( ( G  gsumg  ( i  e.  ( M ... y )  |->  ( [_ i  /  k ]_ C  .-  [_ ( i  +  1 )  /  k ]_ C ) ) )  =  ( [_ M  /  k ]_ C  .-  [_ ( y  +  1 )  /  k ]_ C )  ->  ( G 
 gsumg  ( i  e.  ( M ... ( y  +  1 ) )  |->  (
 [_ i  /  k ]_ C  .-  [_ (
 i  +  1 ) 
 /  k ]_ C ) ) )  =  ( [_ M  /  k ]_ C  .-  [_ (
 ( y  +  1 )  +  1 ) 
 /  k ]_ C ) ) )
 
Theoremtelgsumfzs 18386* Telescoping group sum ranging over a finite set of sequential integers, using explicit substitution. (Contributed by AV, 23-Nov-2019.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ph  ->  A. k  e.  ( M ... ( N  +  1 )
 ) C  e.  B )   =>    |-  ( ph  ->  ( G  gsumg  ( i  e.  ( M ... N )  |->  (
 [_ i  /  k ]_ C  .-  [_ (
 i  +  1 ) 
 /  k ]_ C ) ) )  =  ( [_ M  /  k ]_ C  .-  [_ ( N  +  1 )  /  k ]_ C ) )
 
Theoremtelgsumfz 18387* Telescoping group sum ranging over a finite set of sequential integers, using implicit substitution, analogous to telfsum 14536. (Contributed by AV, 23-Nov-2019.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ph  ->  A. k  e.  ( M ... ( N  +  1 )
 ) A  e.  B )   &    |-  ( k  =  i 
 ->  A  =  L )   &    |-  ( k  =  (
 i  +  1 ) 
 ->  A  =  C )   &    |-  ( k  =  M  ->  A  =  D )   &    |-  ( k  =  ( N  +  1 )  ->  A  =  E )   =>    |-  ( ph  ->  ( G  gsumg  (
 i  e.  ( M
 ... N )  |->  ( L  .-  C )
 ) )  =  ( D  .-  E )
 )
 
Theoremtelgsumfz0s 18388* Telescoping finite group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019.) (Proof shortened by AV, 25-Nov-2019.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  S  e.  NN0 )   &    |-  ( ph  ->  A. k  e.  ( 0 ... ( S  +  1 )
 ) C  e.  B )   =>    |-  ( ph  ->  ( G  gsumg  ( i  e.  (
 0 ... S )  |->  (
 [_ i  /  k ]_ C  .-  [_ (
 i  +  1 ) 
 /  k ]_ C ) ) )  =  ( [_ 0  /  k ]_ C  .-  [_ ( S  +  1 )  /  k ]_ C ) )
 
Theoremtelgsumfz0 18389* Telescoping finite group sum ranging over nonnegative integers, using implicit substitution, analogous to telfsum 14536. (Contributed by AV, 23-Nov-2019.)
 |-  K  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  S  e.  NN0 )   &    |-  ( ph  ->  A. k  e.  ( 0 ... ( S  +  1 )
 ) A  e.  K )   &    |-  ( k  =  i 
 ->  A  =  B )   &    |-  ( k  =  (
 i  +  1 ) 
 ->  A  =  C )   &    |-  ( k  =  0  ->  A  =  D )   &    |-  ( k  =  ( S  +  1 )  ->  A  =  E )   =>    |-  ( ph  ->  ( G  gsumg  (
 i  e.  ( 0
 ... S )  |->  ( B  .-  C )
 ) )  =  ( D  .-  E )
 )
 
Theoremtelgsums 18390* Telescoping finitely supported group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  .-  =  ( -g `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  A. k  e.  NN0  C  e.  B )   &    |-  ( ph  ->  S  e.  NN0 )   &    |-  ( ph  ->  A. k  e.  NN0  ( S  <  k  ->  C  =  .0.  ) )   =>    |-  ( ph  ->  ( G  gsumg  ( i  e.  NN0  |->  ( [_ i  /  k ]_ C  .-  [_ (
 i  +  1 ) 
 /  k ]_ C ) ) )  = 
 [_ 0  /  k ]_ C )
 
Theoremtelgsum 18391* Telescoping finitely supported group sum ranging over nonnegative integers, using implicit substitution. (Contributed by AV, 31-Dec-2019.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  .-  =  ( -g `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  A. k  e.  NN0  A  e.  B )   &    |-  ( ph  ->  S  e.  NN0 )   &    |-  ( ph  ->  A. k  e.  NN0  ( S  <  k  ->  A  =  .0.  ) )   &    |-  (
 k  =  i  ->  A  =  C )   &    |-  (
 k  =  ( i  +  1 )  ->  A  =  D )   &    |-  (
 k  =  0  ->  A  =  E )   =>    |-  ( ph  ->  ( G  gsumg  ( i  e.  NN0  |->  ( C 
 .-  D ) ) )  =  E )
 
10.3.5  Internal direct products
 
Syntaxcdprd 18392 Internal direct product of a family of subgroups.
 class DProd
 
Syntaxcdpj 18393 Projection operator for a direct product.
 class dProj
 
Definitiondf-dprd 18394* Define the internal direct product of a family of subgroups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 11-Jul-2019.)
 |- DProd  =  ( g  e.  Grp ,  s  e.  { h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  { x } ) ( h `  x ) 
 C_  ( (Cntz `  g ) `  ( h `  y ) ) 
 /\  ( ( h `
  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) }
 ) ) }  |->  ran  ( f  e.  { h  e.  X_ x  e. 
 dom  s ( s `
  x )  |  h finSupp  ( 0g `  g ) }  |->  ( g  gsumg  f ) ) )
 
Definitiondf-dpj 18395* Define the projection operator for a direct product. (Contributed by Mario Carneiro, 21-Apr-2016.)
 |- dProj  =  ( g  e.  Grp ,  s  e.  ( dom DProd  " { g } )  |->  ( i  e.  dom  s  |->  ( ( s `
  i ) (
 proj1 `  g ) ( g DProd  ( s  |`  ( dom  s  \  { i } )
 ) ) ) ) )
 
Theoremreldmdprd 18396 The domain of the internal direct product operation is a relation. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.)
 |- 
 Rel  dom DProd
 
Theoremdmdprd 18397* The domain of definition of the internal direct product, which states that  S is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.)
 |-  Z  =  (Cntz `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  K  =  (mrCls `  (SubGrp `  G ) )   =>    |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( G dom DProd  S  <->  ( G  e.  Grp  /\  S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  ( I  \  { x } ) ( S `
  x )  C_  ( Z `  ( S `
  y ) ) 
 /\  ( ( S `
  x )  i^i  ( K `  U. ( S " ( I  \  { x } ) ) ) )  =  {  .0.  } ) ) ) )
 
Theoremdmdprdd 18398* Show that a given family is a direct product decomposition. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
 |-  Z  =  (Cntz `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  K  =  (mrCls `  (SubGrp `  G ) )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  S : I --> (SubGrp `  G ) )   &    |-  ( ( ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y
 ) )  ->  ( S `  x )  C_  ( Z `  ( S `
  y ) ) )   &    |-  ( ( ph  /\  x  e.  I ) 
 ->  ( ( S `  x )  i^i  ( K `
  U. ( S "
 ( I  \  { x } ) ) ) )  C_  {  .0.  } )   =>    |-  ( ph  ->  G dom DProd  S )
 
Theoremdprddomprc 18399 A family of subgroups indexed by a proper class cannot be a family of subgroups for an internal direct product. (Contributed by AV, 13-Jul-2019.)
 |-  ( dom  S  e/  _V 
 ->  -.  G dom DProd  S )
 
Theoremdprddomcld 18400 If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019.)
 |-  ( ph  ->  G dom DProd  S )   &    |-  ( ph  ->  dom 
 S  =  I )   =>    |-  ( ph  ->  I  e.  _V )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >