| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmdprdd | Structured version Visualization version Unicode version | ||
| Description: Show that a given family is a direct product decomposition. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| Ref | Expression |
|---|---|
| dmdprd.z |
|
| dmdprd.0 |
|
| dmdprd.k |
|
| dmdprdd.1 |
|
| dmdprdd.2 |
|
| dmdprdd.3 |
|
| dmdprdd.4 |
|
| dmdprdd.5 |
|
| Ref | Expression |
|---|---|
| dmdprdd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmdprdd.1 |
. 2
| |
| 2 | dmdprdd.3 |
. 2
| |
| 3 | eldifsn 4317 |
. . . . . . 7
| |
| 4 | necom 2847 |
. . . . . . . 8
| |
| 5 | 4 | anbi2i 730 |
. . . . . . 7
|
| 6 | 3, 5 | bitri 264 |
. . . . . 6
|
| 7 | dmdprdd.4 |
. . . . . . . 8
| |
| 8 | 7 | 3exp2 1285 |
. . . . . . 7
|
| 9 | 8 | imp4b 613 |
. . . . . 6
|
| 10 | 6, 9 | syl5bi 232 |
. . . . 5
|
| 11 | 10 | ralrimiv 2965 |
. . . 4
|
| 12 | dmdprdd.5 |
. . . . 5
| |
| 13 | 2 | ffvelrnda 6359 |
. . . . . . . 8
|
| 14 | dmdprd.0 |
. . . . . . . . 9
| |
| 15 | 14 | subg0cl 17602 |
. . . . . . . 8
|
| 16 | 13, 15 | syl 17 |
. . . . . . 7
|
| 17 | 1 | adantr 481 |
. . . . . . . . . 10
|
| 18 | eqid 2622 |
. . . . . . . . . . 11
| |
| 19 | 18 | subgacs 17629 |
. . . . . . . . . 10
|
| 20 | acsmre 16313 |
. . . . . . . . . 10
| |
| 21 | 17, 19, 20 | 3syl 18 |
. . . . . . . . 9
|
| 22 | imassrn 5477 |
. . . . . . . . . . . 12
| |
| 23 | frn 6053 |
. . . . . . . . . . . . . 14
| |
| 24 | 2, 23 | syl 17 |
. . . . . . . . . . . . 13
|
| 25 | 24 | adantr 481 |
. . . . . . . . . . . 12
|
| 26 | 22, 25 | syl5ss 3614 |
. . . . . . . . . . 11
|
| 27 | mresspw 16252 |
. . . . . . . . . . . 12
| |
| 28 | 21, 27 | syl 17 |
. . . . . . . . . . 11
|
| 29 | 26, 28 | sstrd 3613 |
. . . . . . . . . 10
|
| 30 | sspwuni 4611 |
. . . . . . . . . 10
| |
| 31 | 29, 30 | sylib 208 |
. . . . . . . . 9
|
| 32 | dmdprd.k |
. . . . . . . . . 10
| |
| 33 | 32 | mrccl 16271 |
. . . . . . . . 9
|
| 34 | 21, 31, 33 | syl2anc 693 |
. . . . . . . 8
|
| 35 | 14 | subg0cl 17602 |
. . . . . . . 8
|
| 36 | 34, 35 | syl 17 |
. . . . . . 7
|
| 37 | 16, 36 | elind 3798 |
. . . . . 6
|
| 38 | 37 | snssd 4340 |
. . . . 5
|
| 39 | 12, 38 | eqssd 3620 |
. . . 4
|
| 40 | 11, 39 | jca 554 |
. . 3
|
| 41 | 40 | ralrimiva 2966 |
. 2
|
| 42 | dmdprdd.2 |
. . 3
| |
| 43 | fdm 6051 |
. . . 4
| |
| 44 | 2, 43 | syl 17 |
. . 3
|
| 45 | dmdprd.z |
. . . 4
| |
| 46 | 45, 14, 32 | dmdprd 18397 |
. . 3
|
| 47 | 42, 44, 46 | syl2anc 693 |
. 2
|
| 48 | 1, 2, 41, 47 | mpbir3and 1245 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-0g 16102 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-subg 17591 df-dprd 18394 |
| This theorem is referenced by: dprdss 18428 dprdz 18429 dprdf1o 18431 dprdsn 18435 dprd2da 18441 dmdprdsplit2 18445 ablfac1b 18469 |
| Copyright terms: Public domain | W3C validator |