MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdd Structured version   Visualization version   Unicode version

Theorem dmdprdd 18398
Description: Show that a given family is a direct product decomposition. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dmdprd.z  |-  Z  =  (Cntz `  G )
dmdprd.0  |-  .0.  =  ( 0g `  G )
dmdprd.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
dmdprdd.1  |-  ( ph  ->  G  e.  Grp )
dmdprdd.2  |-  ( ph  ->  I  e.  V )
dmdprdd.3  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
dmdprdd.4  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  -> 
( S `  x
)  C_  ( Z `  ( S `  y
) ) )
dmdprdd.5  |-  ( (
ph  /\  x  e.  I )  ->  (
( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) )  C_  {  .0.  } )
Assertion
Ref Expression
dmdprdd  |-  ( ph  ->  G dom DProd  S )
Distinct variable groups:    x, y, G    x, I, y    ph, x, y    x, S, y    x, V, y
Allowed substitution hints:    K( x, y)    .0. ( x, y)    Z( x, y)

Proof of Theorem dmdprdd
StepHypRef Expression
1 dmdprdd.1 . 2  |-  ( ph  ->  G  e.  Grp )
2 dmdprdd.3 . 2  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
3 eldifsn 4317 . . . . . . 7  |-  ( y  e.  ( I  \  { x } )  <-> 
( y  e.  I  /\  y  =/=  x
) )
4 necom 2847 . . . . . . . 8  |-  ( y  =/=  x  <->  x  =/=  y )
54anbi2i 730 . . . . . . 7  |-  ( ( y  e.  I  /\  y  =/=  x )  <->  ( y  e.  I  /\  x  =/=  y ) )
63, 5bitri 264 . . . . . 6  |-  ( y  e.  ( I  \  { x } )  <-> 
( y  e.  I  /\  x  =/=  y
) )
7 dmdprdd.4 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  -> 
( S `  x
)  C_  ( Z `  ( S `  y
) ) )
873exp2 1285 . . . . . . 7  |-  ( ph  ->  ( x  e.  I  ->  ( y  e.  I  ->  ( x  =/=  y  ->  ( S `  x
)  C_  ( Z `  ( S `  y
) ) ) ) ) )
98imp4b 613 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  (
( y  e.  I  /\  x  =/=  y
)  ->  ( S `  x )  C_  ( Z `  ( S `  y ) ) ) )
106, 9syl5bi 232 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
y  e.  ( I 
\  { x }
)  ->  ( S `  x )  C_  ( Z `  ( S `  y ) ) ) )
1110ralrimiv 2965 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  A. y  e.  ( I  \  {
x } ) ( S `  x ) 
C_  ( Z `  ( S `  y ) ) )
12 dmdprdd.5 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) )  C_  {  .0.  } )
132ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  ( S `  x )  e.  (SubGrp `  G )
)
14 dmdprd.0 . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
1514subg0cl 17602 . . . . . . . 8  |-  ( ( S `  x )  e.  (SubGrp `  G
)  ->  .0.  e.  ( S `  x ) )
1613, 15syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  .0.  e.  ( S `  x
) )
171adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  I )  ->  G  e.  Grp )
18 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  G )  =  (
Base `  G )
1918subgacs 17629 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
20 acsmre 16313 . . . . . . . . . 10  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
2117, 19, 203syl 18 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
22 imassrn 5477 . . . . . . . . . . . 12  |-  ( S
" ( I  \  { x } ) )  C_  ran  S
23 frn 6053 . . . . . . . . . . . . . 14  |-  ( S : I --> (SubGrp `  G )  ->  ran  S 
C_  (SubGrp `  G )
)
242, 23syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ran  S  C_  (SubGrp `  G ) )
2524adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  I )  ->  ran  S 
C_  (SubGrp `  G )
)
2622, 25syl5ss 3614 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  I )  ->  ( S " ( I  \  { x } ) )  C_  (SubGrp `  G
) )
27 mresspw 16252 . . . . . . . . . . . 12  |-  ( (SubGrp `  G )  e.  (Moore `  ( Base `  G
) )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
2821, 27syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  I )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
2926, 28sstrd 3613 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  I )  ->  ( S " ( I  \  { x } ) )  C_  ~P ( Base `  G ) )
30 sspwuni 4611 . . . . . . . . . 10  |-  ( ( S " ( I 
\  { x }
) )  C_  ~P ( Base `  G )  <->  U. ( S " (
I  \  { x } ) )  C_  ( Base `  G )
)
3129, 30sylib 208 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  U. ( S " ( I  \  { x } ) )  C_  ( Base `  G ) )
32 dmdprd.k . . . . . . . . . 10  |-  K  =  (mrCls `  (SubGrp `  G
) )
3332mrccl 16271 . . . . . . . . 9  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " (
I  \  { x } ) )  C_  ( Base `  G )
)  ->  ( K `  U. ( S "
( I  \  {
x } ) ) )  e.  (SubGrp `  G ) )
3421, 31, 33syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  ( K `  U. ( S
" ( I  \  { x } ) ) )  e.  (SubGrp `  G ) )
3514subg0cl 17602 . . . . . . . 8  |-  ( ( K `  U. ( S " ( I  \  { x } ) ) )  e.  (SubGrp `  G )  ->  .0.  e.  ( K `  U. ( S " ( I 
\  { x }
) ) ) )
3634, 35syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  .0.  e.  ( K `  U. ( S " ( I 
\  { x }
) ) ) )
3716, 36elind 3798 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  .0.  e.  ( ( S `  x )  i^i  ( K `  U. ( S
" ( I  \  { x } ) ) ) ) )
3837snssd 4340 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  {  .0.  } 
C_  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) ) )
3912, 38eqssd 3620 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) )  =  {  .0.  } )
4011, 39jca 554 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) )
4140ralrimiva 2966 . 2  |-  ( ph  ->  A. x  e.  I 
( A. y  e.  ( I  \  {
x } ) ( S `  x ) 
C_  ( Z `  ( S `  y ) )  /\  ( ( S `  x )  i^i  ( K `  U. ( S " (
I  \  { x } ) ) ) )  =  {  .0.  } ) )
42 dmdprdd.2 . . 3  |-  ( ph  ->  I  e.  V )
43 fdm 6051 . . . 4  |-  ( S : I --> (SubGrp `  G )  ->  dom  S  =  I )
442, 43syl 17 . . 3  |-  ( ph  ->  dom  S  =  I )
45 dmdprd.z . . . 4  |-  Z  =  (Cntz `  G )
4645, 14, 32dmdprd 18397 . . 3  |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( G dom DProd  S  <-> 
( G  e.  Grp  /\  S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) ) ) )
4742, 44, 46syl2anc 693 . 2  |-  ( ph  ->  ( G dom DProd  S  <->  ( G  e.  Grp  /\  S :
I --> (SubGrp `  G )  /\  A. x  e.  I 
( A. y  e.  ( I  \  {
x } ) ( S `  x ) 
C_  ( Z `  ( S `  y ) )  /\  ( ( S `  x )  i^i  ( K `  U. ( S " (
I  \  { x } ) ) ) )  =  {  .0.  } ) ) ) )
481, 2, 41, 47mpbir3and 1245 1  |-  ( ph  ->  G dom DProd  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   {csn 4177   U.cuni 4436   class class class wbr 4653   dom cdm 5114   ran crn 5115   "cima 5117   -->wf 5884   ` cfv 5888   Basecbs 15857   0gc0g 16100  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245   Grpcgrp 17422  SubGrpcsubg 17588  Cntzccntz 17748   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-dprd 18394
This theorem is referenced by:  dprdss  18428  dprdz  18429  dprdf1o  18431  dprdsn  18435  dprd2da  18441  dmdprdsplit2  18445  ablfac1b  18469
  Copyright terms: Public domain W3C validator