MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdmdprd Structured version   Visualization version   Unicode version

Theorem subgdmdprd 18433
Description: A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypothesis
Ref Expression
subgdprd.1  |-  H  =  ( Gs  A )
Assertion
Ref Expression
subgdmdprd  |-  ( A  e.  (SubGrp `  G
)  ->  ( H dom DProd  S  <->  ( G dom DProd  S  /\  ran  S  C_  ~P A ) ) )

Proof of Theorem subgdmdprd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmdprd 18396 . . . 4  |-  Rel  dom DProd
21brrelex2i 5159 . . 3  |-  ( H dom DProd  S  ->  S  e. 
_V )
32a1i 11 . 2  |-  ( A  e.  (SubGrp `  G
)  ->  ( H dom DProd  S  ->  S  e.  _V ) )
41brrelex2i 5159 . . . 4  |-  ( G dom DProd  S  ->  S  e. 
_V )
54adantr 481 . . 3  |-  ( ( G dom DProd  S  /\  ran  S  C_  ~P A
)  ->  S  e.  _V )
65a1i 11 . 2  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( G dom DProd  S  /\  ran  S  C_ 
~P A )  ->  S  e.  _V )
)
7 ffvelrn 6357 . . . . . . . . . . . . . . . 16  |-  ( ( S : dom  S --> (SubGrp `  H )  /\  x  e.  dom  S )  ->  ( S `  x )  e.  (SubGrp `  H ) )
87ad2ant2lr 784 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  x )  e.  (SubGrp `  H ) )
9 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( Base `  H )  =  (
Base `  H )
109subgss 17595 . . . . . . . . . . . . . . 15  |-  ( ( S `  x )  e.  (SubGrp `  H
)  ->  ( S `  x )  C_  ( Base `  H ) )
118, 10syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  x )  C_  ( Base `  H ) )
12 subgdprd.1 . . . . . . . . . . . . . . . 16  |-  H  =  ( Gs  A )
1312subgbas 17598 . . . . . . . . . . . . . . 15  |-  ( A  e.  (SubGrp `  G
)  ->  A  =  ( Base `  H )
)
1413ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  A  =  ( Base `  H )
)
1511, 14sseqtr4d 3642 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  x )  C_  A
)
1615biantrud 528 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  <->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  /\  ( S `  x ) 
C_  A ) ) )
17 simpll 790 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  A  e.  (SubGrp `  G ) )
18 simplr 792 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  S : dom  S --> (SubGrp `  H )
)
19 eldifi 3732 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( dom  S  \  { x } )  ->  y  e.  dom  S )
2019ad2antll 765 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  y  e.  dom  S )
2118, 20ffvelrnd 6360 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  y )  e.  (SubGrp `  H ) )
229subgss 17595 . . . . . . . . . . . . . . . . 17  |-  ( ( S `  y )  e.  (SubGrp `  H
)  ->  ( S `  y )  C_  ( Base `  H ) )
2321, 22syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  y )  C_  ( Base `  H ) )
2423, 14sseqtr4d 3642 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  y )  C_  A
)
25 eqid 2622 . . . . . . . . . . . . . . . 16  |-  (Cntz `  G )  =  (Cntz `  G )
26 eqid 2622 . . . . . . . . . . . . . . . 16  |-  (Cntz `  H )  =  (Cntz `  H )
2712, 25, 26resscntz 17764 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  (SubGrp `  G )  /\  ( S `  y )  C_  A )  ->  (
(Cntz `  H ) `  ( S `  y
) )  =  ( ( (Cntz `  G
) `  ( S `  y ) )  i^i 
A ) )
2817, 24, 27syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( (Cntz `  H ) `  ( S `  y )
)  =  ( ( (Cntz `  G ) `  ( S `  y
) )  i^i  A
) )
2928sseq2d 3633 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( ( S `  x )  C_  ( (Cntz `  H
) `  ( S `  y ) )  <->  ( S `  x )  C_  (
( (Cntz `  G
) `  ( S `  y ) )  i^i 
A ) ) )
30 ssin 3835 . . . . . . . . . . . . 13  |-  ( ( ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( S `  x )  C_  A
)  <->  ( S `  x )  C_  (
( (Cntz `  G
) `  ( S `  y ) )  i^i 
A ) )
3129, 30syl6bbr 278 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( ( S `  x )  C_  ( (Cntz `  H
) `  ( S `  y ) )  <->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  /\  ( S `  x ) 
C_  A ) ) )
3216, 31bitr4d 271 . . . . . . . . . . 11  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  <->  ( S `  x )  C_  (
(Cntz `  H ) `  ( S `  y
) ) ) )
3332anassrs 680 . . . . . . . . . 10  |-  ( ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  /\  y  e.  ( dom  S  \  { x } ) )  ->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  <->  ( S `  x )  C_  (
(Cntz `  H ) `  ( S `  y
) ) ) )
3433ralbidva 2985 . . . . . . . . 9  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  <->  A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
) ) )
35 subgrcl 17599 . . . . . . . . . . . . . . 15  |-  ( A  e.  (SubGrp `  G
)  ->  G  e.  Grp )
3635ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  G  e.  Grp )
37 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( Base `  G )  =  (
Base `  G )
3837subgacs 17629 . . . . . . . . . . . . . 14  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
39 acsmre 16313 . . . . . . . . . . . . . 14  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
4036, 38, 393syl 18 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G ) ) )
4112subggrp 17597 . . . . . . . . . . . . . . . 16  |-  ( A  e.  (SubGrp `  G
)  ->  H  e.  Grp )
4241ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  H  e.  Grp )
439subgacs 17629 . . . . . . . . . . . . . . 15  |-  ( H  e.  Grp  ->  (SubGrp `  H )  e.  (ACS
`  ( Base `  H
) ) )
44 acsmre 16313 . . . . . . . . . . . . . . 15  |-  ( (SubGrp `  H )  e.  (ACS
`  ( Base `  H
) )  ->  (SubGrp `  H )  e.  (Moore `  ( Base `  H
) ) )
4542, 43, 443syl 18 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  (SubGrp `  H )  e.  (Moore `  ( Base `  H ) ) )
46 eqid 2622 . . . . . . . . . . . . . 14  |-  (mrCls `  (SubGrp `  H ) )  =  (mrCls `  (SubGrp `  H ) )
47 imassrn 5477 . . . . . . . . . . . . . . . . 17  |-  ( S
" ( dom  S  \  { x } ) )  C_  ran  S
48 frn 6053 . . . . . . . . . . . . . . . . . 18  |-  ( S : dom  S --> (SubGrp `  H )  ->  ran  S 
C_  (SubGrp `  H )
)
4948ad2antlr 763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ran  S  C_  (SubGrp `  H ) )
5047, 49syl5ss 3614 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( S "
( dom  S  \  {
x } ) ) 
C_  (SubGrp `  H )
)
51 mresspw 16252 . . . . . . . . . . . . . . . . 17  |-  ( (SubGrp `  H )  e.  (Moore `  ( Base `  H
) )  ->  (SubGrp `  H )  C_  ~P ( Base `  H )
)
5245, 51syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  (SubGrp `  H )  C_ 
~P ( Base `  H
) )
5350, 52sstrd 3613 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( S "
( dom  S  \  {
x } ) ) 
C_  ~P ( Base `  H
) )
54 sspwuni 4611 . . . . . . . . . . . . . . 15  |-  ( ( S " ( dom 
S  \  { x } ) )  C_  ~P ( Base `  H
)  <->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( Base `  H
) )
5553, 54sylib 208 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( Base `  H
) )
5645, 46, 55mrcssidd 16285 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )
5746mrccl 16271 . . . . . . . . . . . . . . . 16  |-  ( ( (SubGrp `  H )  e.  (Moore `  ( Base `  H ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  ( Base `  H )
)  ->  ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H ) )
5845, 55, 57syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H ) )
5912subsubg 17617 . . . . . . . . . . . . . . . 16  |-  ( A  e.  (SubGrp `  G
)  ->  ( (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  e.  (SubGrp `  H
)  <->  ( ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G )  /\  (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) 
C_  A ) ) )
6059ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H )  <->  ( (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  e.  (SubGrp `  G
)  /\  ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  C_  A
) ) )
6158, 60mpbid 222 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G )  /\  (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) 
C_  A ) )
6261simpld 475 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G ) )
63 eqid 2622 . . . . . . . . . . . . . 14  |-  (mrCls `  (SubGrp `  G ) )  =  (mrCls `  (SubGrp `  G ) )
6463mrcsscl 16280 . . . . . . . . . . . . 13  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  ( (mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  /\  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G ) )  -> 
( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) 
C_  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )
6540, 56, 62, 64syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  C_  (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) )
6613ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  A  =  (
Base `  H )
)
6755, 66sseqtr4d 3642 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  A )
6837subgss 17595 . . . . . . . . . . . . . . . 16  |-  ( A  e.  (SubGrp `  G
)  ->  A  C_  ( Base `  G ) )
6968ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  A  C_  ( Base `  G ) )
7067, 69sstrd 3613 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( Base `  G
) )
7140, 63, 70mrcssidd 16285 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )
7263mrccl 16271 . . . . . . . . . . . . . . 15  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  ( Base `  G )
)  ->  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G ) )
7340, 70, 72syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G ) )
74 simpll 790 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  A  e.  (SubGrp `  G ) )
7563mrcsscl 16280 . . . . . . . . . . . . . . 15  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  A  /\  A  e.  (SubGrp `  G ) )  -> 
( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) 
C_  A )
7640, 67, 74, 75syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  C_  A
)
7712subsubg 17617 . . . . . . . . . . . . . . 15  |-  ( A  e.  (SubGrp `  G
)  ->  ( (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  e.  (SubGrp `  H
)  <->  ( ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G )  /\  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) 
C_  A ) ) )
7877ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H )  <->  ( (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  e.  (SubGrp `  G
)  /\  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  C_  A
) ) )
7973, 76, 78mpbir2and 957 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H ) )
8046mrcsscl 16280 . . . . . . . . . . . . 13  |-  ( ( (SubGrp `  H )  e.  (Moore `  ( Base `  H ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  /\  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H ) )  -> 
( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) 
C_  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )
8145, 71, 79, 80syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  C_  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) )
8265, 81eqssd 3620 . . . . . . . . . . 11  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  =  ( (mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) )
8382ineq2d 3814 . . . . . . . . . 10  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( S `
 x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) ) )
84 eqid 2622 . . . . . . . . . . . . 13  |-  ( 0g
`  G )  =  ( 0g `  G
)
8512, 84subg0 17600 . . . . . . . . . . . 12  |-  ( A  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
8685ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( 0g `  G )  =  ( 0g `  H ) )
8786sneqd 4189 . . . . . . . . . 10  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  { ( 0g
`  G ) }  =  { ( 0g
`  H ) } )
8883, 87eqeq12d 2637 . . . . . . . . 9  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) }  <->  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) )
8934, 88anbi12d 747 . . . . . . . 8  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( A. y  e.  ( dom  S 
\  { x }
) ( S `  x )  C_  (
(Cntz `  G ) `  ( S `  y
) )  /\  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } )  <-> 
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) )
9089ralbidva 2985 . . . . . . 7  |-  ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  -> 
( A. x  e. 
dom  S ( A. y  e.  ( dom  S 
\  { x }
) ( S `  x )  C_  (
(Cntz `  G ) `  ( S `  y
) )  /\  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } )  <->  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) )
9190pm5.32da 673 . . . . . 6  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  <->  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
9212subsubg 17617 . . . . . . . . . . . . 13  |-  ( A  e.  (SubGrp `  G
)  ->  ( x  e.  (SubGrp `  H )  <->  ( x  e.  (SubGrp `  G )  /\  x  C_  A ) ) )
93 elin 3796 . . . . . . . . . . . . . 14  |-  ( x  e.  ( (SubGrp `  G )  i^i  ~P A )  <->  ( x  e.  (SubGrp `  G )  /\  x  e.  ~P A ) )
94 selpw 4165 . . . . . . . . . . . . . . 15  |-  ( x  e.  ~P A  <->  x  C_  A
)
9594anbi2i 730 . . . . . . . . . . . . . 14  |-  ( ( x  e.  (SubGrp `  G )  /\  x  e.  ~P A )  <->  ( x  e.  (SubGrp `  G )  /\  x  C_  A ) )
9693, 95bitri 264 . . . . . . . . . . . . 13  |-  ( x  e.  ( (SubGrp `  G )  i^i  ~P A )  <->  ( x  e.  (SubGrp `  G )  /\  x  C_  A ) )
9792, 96syl6bbr 278 . . . . . . . . . . . 12  |-  ( A  e.  (SubGrp `  G
)  ->  ( x  e.  (SubGrp `  H )  <->  x  e.  ( (SubGrp `  G )  i^i  ~P A ) ) )
9897eqrdv 2620 . . . . . . . . . . 11  |-  ( A  e.  (SubGrp `  G
)  ->  (SubGrp `  H
)  =  ( (SubGrp `  G )  i^i  ~P A ) )
9998sseq2d 3633 . . . . . . . . . 10  |-  ( A  e.  (SubGrp `  G
)  ->  ( ran  S 
C_  (SubGrp `  H )  <->  ran 
S  C_  ( (SubGrp `  G )  i^i  ~P A ) ) )
100 ssin 3835 . . . . . . . . . 10  |-  ( ( ran  S  C_  (SubGrp `  G )  /\  ran  S 
C_  ~P A )  <->  ran  S  C_  ( (SubGrp `  G )  i^i  ~P A ) )
10199, 100syl6bbr 278 . . . . . . . . 9  |-  ( A  e.  (SubGrp `  G
)  ->  ( ran  S 
C_  (SubGrp `  H )  <->  ( ran  S  C_  (SubGrp `  G )  /\  ran  S 
C_  ~P A ) ) )
102101anbi2d 740 . . . . . . . 8  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( S  Fn  dom  S  /\  ran  S  C_  (SubGrp `  H
) )  <->  ( S  Fn  dom  S  /\  ( ran  S  C_  (SubGrp `  G
)  /\  ran  S  C_  ~P A ) ) ) )
103 df-f 5892 . . . . . . . 8  |-  ( S : dom  S --> (SubGrp `  H )  <->  ( S  Fn  dom  S  /\  ran  S 
C_  (SubGrp `  H )
) )
104 df-f 5892 . . . . . . . . . 10  |-  ( S : dom  S --> (SubGrp `  G )  <->  ( S  Fn  dom  S  /\  ran  S 
C_  (SubGrp `  G )
) )
105104anbi1i 731 . . . . . . . . 9  |-  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S  C_  ~P A
)  <->  ( ( S  Fn  dom  S  /\  ran  S  C_  (SubGrp `  G
) )  /\  ran  S 
C_  ~P A ) )
106 anass 681 . . . . . . . . 9  |-  ( ( ( S  Fn  dom  S  /\  ran  S  C_  (SubGrp `  G ) )  /\  ran  S  C_  ~P A )  <->  ( S  Fn  dom  S  /\  ( ran  S  C_  (SubGrp `  G
)  /\  ran  S  C_  ~P A ) ) )
107105, 106bitri 264 . . . . . . . 8  |-  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S  C_  ~P A
)  <->  ( S  Fn  dom  S  /\  ( ran 
S  C_  (SubGrp `  G
)  /\  ran  S  C_  ~P A ) ) )
108102, 103, 1073bitr4g 303 . . . . . . 7  |-  ( A  e.  (SubGrp `  G
)  ->  ( S : dom  S --> (SubGrp `  H )  <->  ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A ) ) )
109108anbi1d 741 . . . . . 6  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
11091, 109bitr3d 270 . . . . 5  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) )  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
111110adantr 481 . . . 4  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  (
( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) )  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
112 dmexg 7097 . . . . . 6  |-  ( S  e.  _V  ->  dom  S  e.  _V )
113112adantl 482 . . . . 5  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  dom  S  e.  _V )
114 eqidd 2623 . . . . 5  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  dom  S  =  dom  S )
11541adantr 481 . . . . 5  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  H  e.  Grp )
116 eqid 2622 . . . . . . . 8  |-  ( 0g
`  H )  =  ( 0g `  H
)
11726, 116, 46dmdprd 18397 . . . . . . 7  |-  ( ( dom  S  e.  _V  /\ 
dom  S  =  dom  S )  ->  ( H dom DProd  S  <->  ( H  e. 
Grp  /\  S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
118 3anass 1042 . . . . . . 7  |-  ( ( H  e.  Grp  /\  S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) )  <->  ( H  e.  Grp  /\  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
119117, 118syl6bb 276 . . . . . 6  |-  ( ( dom  S  e.  _V  /\ 
dom  S  =  dom  S )  ->  ( H dom DProd  S  <->  ( H  e. 
Grp  /\  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) ) )
120119baibd 948 . . . . 5  |-  ( ( ( dom  S  e. 
_V  /\  dom  S  =  dom  S )  /\  H  e.  Grp )  ->  ( H dom DProd  S  <->  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
121113, 114, 115, 120syl21anc 1325 . . . 4  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  ( H dom DProd  S  <->  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
12235adantr 481 . . . . . . 7  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  G  e.  Grp )
12325, 84, 63dmdprd 18397 . . . . . . . . 9  |-  ( ( dom  S  e.  _V  /\ 
dom  S  =  dom  S )  ->  ( G dom DProd  S  <->  ( G  e. 
Grp  /\  S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
124 3anass 1042 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  <->  ( G  e.  Grp  /\  ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
125123, 124syl6bb 276 . . . . . . . 8  |-  ( ( dom  S  e.  _V  /\ 
dom  S  =  dom  S )  ->  ( G dom DProd  S  <->  ( G  e. 
Grp  /\  ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) ) )
126125baibd 948 . . . . . . 7  |-  ( ( ( dom  S  e. 
_V  /\  dom  S  =  dom  S )  /\  G  e.  Grp )  ->  ( G dom DProd  S  <->  ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
127113, 114, 122, 126syl21anc 1325 . . . . . 6  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  ( G dom DProd  S  <->  ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
128127anbi1d 741 . . . . 5  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  (
( G dom DProd  S  /\  ran  S  C_  ~P A
)  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  /\  ran  S  C_  ~P A
) ) )
129 an32 839 . . . . 5  |-  ( ( ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  /\  ran  S  C_  ~P A
)  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) )
130128, 129syl6bb 276 . . . 4  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  (
( G dom DProd  S  /\  ran  S  C_  ~P A
)  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
131111, 121, 1303bitr4d 300 . . 3  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  ( H dom DProd  S  <->  ( G dom DProd  S  /\  ran  S  C_  ~P A ) ) )
132131ex 450 . 2  |-  ( A  e.  (SubGrp `  G
)  ->  ( S  e.  _V  ->  ( H dom DProd  S  <->  ( G dom DProd  S  /\  ran  S  C_  ~P A ) ) ) )
1333, 6, 132pm5.21ndd 369 1  |-  ( A  e.  (SubGrp `  G
)  ->  ( H dom DProd  S  <->  ( G dom DProd  S  /\  ran  S  C_  ~P A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   {csn 4177   U.cuni 4436   class class class wbr 4653   dom cdm 5114   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   0gc0g 16100  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245   Grpcgrp 17422  SubGrpcsubg 17588  Cntzccntz 17748   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-cntz 17750  df-dprd 18394
This theorem is referenced by:  subgdprd  18434  ablfaclem3  18486
  Copyright terms: Public domain W3C validator