Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madeval2 Structured version   Visualization version   Unicode version

Theorem madeval2 31936
Description: Alternative characterization of the made by function. (Contributed by Scott Fenton, 17-Dec-2021.)
Assertion
Ref Expression
madeval2  |-  ( A  e.  On  ->  ( M  `  A )  =  {
x  e.  No  |  E. a  e.  ~P  U. ( M  " A ) E. b  e.  ~P  U. ( M  " A ) ( a < <s b  /\  ( a |s b )  =  x ) } )
Distinct variable group:    x, A, a, b

Proof of Theorem madeval2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 madeval 31935 . 2  |-  ( A  e.  On  ->  ( M  `  A )  =  ( |s " ( ~P U. ( M  " A
)  X.  ~P U. ( M  " A ) ) ) )
2 scutcut 31912 . . . . . . . . 9  |-  ( a < <s b  ->  ( ( a |s b )  e.  No  /\  a
< <s { ( a |s b ) }  /\  {
( a |s b ) } < <s b ) )
32simp1d 1073 . . . . . . . 8  |-  ( a < <s b  ->  ( a |s b )  e.  No )
4 eleq1 2689 . . . . . . . . 9  |-  ( ( a |s b )  =  x  -> 
( ( a |s b )  e.  No  <->  x  e.  No ) )
54biimpd 219 . . . . . . . 8  |-  ( ( a |s b )  =  x  -> 
( ( a |s b )  e.  No  ->  x  e.  No ) )
63, 5mpan9 486 . . . . . . 7  |-  ( ( a < <s
b  /\  ( a |s b )  =  x )  ->  x  e.  No )
76rexlimivw 3029 . . . . . 6  |-  ( E. b  e.  ~P  U. ( M  " A ) ( a < <s
b  /\  ( a |s b )  =  x )  ->  x  e.  No )
87rexlimivw 3029 . . . . 5  |-  ( E. a  e.  ~P  U. ( M  " A ) E. b  e.  ~P  U. ( M  " A ) ( a < <s
b  /\  ( a |s b )  =  x )  ->  x  e.  No )
98pm4.71ri 665 . . . 4  |-  ( E. a  e.  ~P  U. ( M  " A ) E. b  e.  ~P  U. ( M  " A ) ( a < <s
b  /\  ( a |s b )  =  x )  <->  ( x  e.  No  /\  E. a  e.  ~P  U. ( M  " A ) E. b  e.  ~P  U. ( M  " A ) ( a < <s b  /\  ( a |s b )  =  x ) ) )
109abbii 2739 . . 3  |-  { x  |  E. a  e.  ~P  U. ( M  " A ) E. b  e.  ~P  U. ( M  " A ) ( a < <s b  /\  ( a |s b )  =  x ) }  =  { x  |  ( x  e.  No  /\ 
E. a  e.  ~P  U. ( M  " A ) E. b  e.  ~P  U. ( M  " A ) ( a < <s b  /\  ( a |s b )  =  x ) ) }
11 eleq1 2689 . . . . . . 7  |-  ( y  =  <. a ,  b
>.  ->  ( y  e. 
< <s  <->  <. a ,  b >.  e.  < <s ) )
12 breq1 4656 . . . . . . 7  |-  ( y  =  <. a ,  b
>.  ->  ( y |s x  <->  <. a ,  b >. |s x ) )
1311, 12anbi12d 747 . . . . . 6  |-  ( y  =  <. a ,  b
>.  ->  ( ( y  e.  < <s  /\  y |s x )  <->  ( <. a ,  b >.  e.  < <s  /\  <. a ,  b
>. |s x ) ) )
1413rexxp 5264 . . . . 5  |-  ( E. y  e.  ( ~P
U. ( M  " A
)  X.  ~P U. ( M  " A ) ) ( y  e.  < <s  /\  y |s x )  <->  E. a  e.  ~P  U. ( M  " A ) E. b  e.  ~P  U. ( M  " A ) ( <.
a ,  b >.  e.  < <s  /\  <.
a ,  b >. |s x ) )
15 imaindm 31682 . . . . . . . 8  |-  ( |s " ( ~P
U. ( M  " A
)  X.  ~P U. ( M  " A ) ) )  =  ( |s " ( ( ~P U. ( M  " A )  X.  ~P U. ( M  " A ) )  i^i  dom  |s ) )
16 dmscut 31918 . . . . . . . . . 10  |-  dom  |s  =  < <s
1716ineq2i 3811 . . . . . . . . 9  |-  ( ( ~P U. ( M  " A )  X.  ~P U. ( M  " A ) )  i^i  dom  |s )  =  ( ( ~P U. ( M  " A )  X.  ~P U. ( M  " A ) )  i^i  < <s )
1817imaeq2i 5464 . . . . . . . 8  |-  ( |s " ( ( ~P U. ( M  " A )  X.  ~P U. ( M  " A ) )  i^i  dom  |s ) )  =  ( |s "
( ( ~P U. ( M  " A )  X. 
~P U. ( M  " A
) )  i^i  < <s ) )
1915, 18eqtri 2644 . . . . . . 7  |-  ( |s " ( ~P
U. ( M  " A
)  X.  ~P U. ( M  " A ) ) )  =  ( |s " ( ( ~P U. ( M  " A )  X.  ~P U. ( M  " A ) )  i^i  < <s ) )
2019eleq2i 2693 . . . . . 6  |-  ( x  e.  ( |s " ( ~P U. ( M  " A )  X. 
~P U. ( M  " A
) ) )  <->  x  e.  ( |s " (
( ~P U. ( M  " A )  X.  ~P U. ( M  " A ) )  i^i  < <s ) ) )
21 vex 3203 . . . . . . 7  |-  x  e. 
_V
2221elima 5471 . . . . . 6  |-  ( x  e.  ( |s " ( ( ~P
U. ( M  " A
)  X.  ~P U. ( M  " A ) )  i^i  < <s
) )  <->  E. y  e.  ( ( ~P U. ( M  " A )  X. 
~P U. ( M  " A
) )  i^i  < <s ) y |s x )
23 elin 3796 . . . . . . . . 9  |-  ( y  e.  ( ( ~P
U. ( M  " A
)  X.  ~P U. ( M  " A ) )  i^i  < <s
)  <->  ( y  e.  ( ~P U. ( M  " A )  X.  ~P U. ( M  " A ) )  /\  y  e. 
< <s ) )
2423anbi1i 731 . . . . . . . 8  |-  ( ( y  e.  ( ( ~P U. ( M  " A )  X.  ~P U. ( M  " A ) )  i^i  < <s )  /\  y |s x )  <->  ( (
y  e.  ( ~P
U. ( M  " A
)  X.  ~P U. ( M  " A ) )  /\  y  e.  < <s )  /\  y |s x ) )
25 anass 681 . . . . . . . 8  |-  ( ( ( y  e.  ( ~P U. ( M  " A )  X.  ~P U. ( M  " A ) )  /\  y  e. 
< <s )  /\  y |s x )  <-> 
( y  e.  ( ~P U. ( M  " A )  X.  ~P U. ( M  " A ) )  /\  ( y  e.  < <s  /\  y |s x ) ) )
2624, 25bitri 264 . . . . . . 7  |-  ( ( y  e.  ( ( ~P U. ( M  " A )  X.  ~P U. ( M  " A ) )  i^i  < <s )  /\  y |s x )  <->  ( y  e.  ( ~P U. ( M  " A )  X.  ~P U. ( M  " A ) )  /\  ( y  e.  < <s  /\  y |s x ) ) )
2726rexbii2 3039 . . . . . 6  |-  ( E. y  e.  ( ( ~P U. ( M  " A )  X.  ~P U. ( M  " A ) )  i^i  < <s ) y |s x  <->  E. y  e.  ( ~P U. ( M  " A )  X.  ~P U. ( M  " A ) ) ( y  e. 
< <s  /\  y |s x ) )
2820, 22, 273bitri 286 . . . . 5  |-  ( x  e.  ( |s " ( ~P U. ( M  " A )  X. 
~P U. ( M  " A
) ) )  <->  E. y  e.  ( ~P U. ( M  " A )  X.  ~P U. ( M  " A ) ) ( y  e. 
< <s  /\  y |s x ) )
29 df-br 4654 . . . . . . . 8  |-  ( a < <s b  <->  <. a ,  b >.  e.  < <s )
3029anbi1i 731 . . . . . . 7  |-  ( ( a < <s
b  /\  ( a |s b )  =  x )  <->  ( <. a ,  b >.  e.  < <s  /\  ( a |s b )  =  x ) )
31 df-ov 6653 . . . . . . . . . 10  |-  ( a |s b )  =  ( |s `  <. a ,  b
>. )
3231eqeq1i 2627 . . . . . . . . 9  |-  ( ( a |s b )  =  x  <->  ( |s `  <. a ,  b >. )  =  x )
33 scutf 31919 . . . . . . . . . . 11  |-  |s : < <s --> No
34 ffn 6045 . . . . . . . . . . 11  |-  ( |s : < <s --> No  ->  |s  Fn  < <s )
3533, 34ax-mp 5 . . . . . . . . . 10  |-  |s  Fn  < <s
36 fnbrfvb 6236 . . . . . . . . . 10  |-  ( ( |s  Fn  < <s  /\  <. a ,  b
>.  e.  < <s
)  ->  ( ( |s `  <. a ,  b >. )  =  x  <->  <. a ,  b
>. |s x ) )
3735, 36mpan 706 . . . . . . . . 9  |-  ( <.
a ,  b >.  e.  < <s  -> 
( ( |s `  <. a ,  b
>. )  =  x  <->  <.
a ,  b >. |s x ) )
3832, 37syl5bb 272 . . . . . . . 8  |-  ( <.
a ,  b >.  e.  < <s  -> 
( ( a |s b )  =  x  <->  <. a ,  b
>. |s x ) )
3938pm5.32i 669 . . . . . . 7  |-  ( (
<. a ,  b >.  e.  < <s  /\  ( a |s b )  =  x )  <->  ( <. a ,  b >.  e.  < <s  /\  <. a ,  b
>. |s x ) )
4030, 39bitri 264 . . . . . 6  |-  ( ( a < <s
b  /\  ( a |s b )  =  x )  <->  ( <. a ,  b >.  e.  < <s  /\  <. a ,  b
>. |s x ) )
41402rexbii 3042 . . . . 5  |-  ( E. a  e.  ~P  U. ( M  " A ) E. b  e.  ~P  U. ( M  " A ) ( a < <s
b  /\  ( a |s b )  =  x )  <->  E. a  e.  ~P  U. ( M  " A ) E. b  e.  ~P  U. ( M  " A ) ( <.
a ,  b >.  e.  < <s  /\  <.
a ,  b >. |s x ) )
4214, 28, 413bitr4i 292 . . . 4  |-  ( x  e.  ( |s " ( ~P U. ( M  " A )  X. 
~P U. ( M  " A
) ) )  <->  E. a  e.  ~P  U. ( M  " A ) E. b  e.  ~P  U. ( M  " A ) ( a < <s b  /\  ( a |s b )  =  x ) )
4342abbi2i 2738 . . 3  |-  ( |s " ( ~P
U. ( M  " A
)  X.  ~P U. ( M  " A ) ) )  =  { x  |  E. a  e.  ~P  U. ( M  " A ) E. b  e.  ~P  U. ( M  " A ) ( a < <s b  /\  ( a |s b )  =  x ) }
44 df-rab 2921 . . 3  |-  { x  e.  No  |  E. a  e.  ~P  U. ( M  " A ) E. b  e.  ~P  U. ( M  " A ) ( a < <s b  /\  ( a |s b )  =  x ) }  =  { x  |  (
x  e.  No  /\  E. a  e.  ~P  U. ( M  " A ) E. b  e.  ~P  U. ( M  " A ) ( a < <s
b  /\  ( a |s b )  =  x ) ) }
4510, 43, 443eqtr4i 2654 . 2  |-  ( |s " ( ~P
U. ( M  " A
)  X.  ~P U. ( M  " A ) ) )  =  { x  e.  No  |  E. a  e.  ~P  U. ( M  " A ) E. b  e.  ~P  U. ( M  " A ) ( a < <s b  /\  ( a |s b )  =  x ) }
461, 45syl6eq 2672 1  |-  ( A  e.  On  ->  ( M  `  A )  =  {
x  e.  No  |  E. a  e.  ~P  U. ( M  " A ) E. b  e.  ~P  U. ( M  " A ) ( a < <s b  /\  ( a |s b )  =  x ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   {crab 2916    i^i cin 3573   ~Pcpw 4158   {csn 4177   <.cop 4183   U.cuni 4436   class class class wbr 4653    X. cxp 5112   dom cdm 5114   "cima 5117   Oncon0 5723    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Nocsur 31793   < <scsslt 31896   |scscut 31898   M cmade 31925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797  df-bday 31798  df-sslt 31897  df-scut 31899  df-made 31930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator