MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domssex Structured version   Visualization version   Unicode version

Theorem domssex 8121
Description: Weakening of domssex 8121 to forget the functions in favor of dominance and equinumerosity. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
domssex  |-  ( A  ~<_  B  ->  E. x
( A  C_  x  /\  B  ~~  x ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem domssex
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 brdomi 7966 . 2  |-  ( A  ~<_  B  ->  E. f 
f : A -1-1-> B
)
2 reldom 7961 . . 3  |-  Rel  ~<_
32brrelex2i 5159 . 2  |-  ( A  ~<_  B  ->  B  e.  _V )
4 vex 3203 . . . . . . . 8  |-  f  e. 
_V
5 f1stres 7190 . . . . . . . . . 10  |-  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) : ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) --> ( B  \  ran  f )
65a1i 11 . . . . . . . . 9  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) : ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) --> ( B  \  ran  f ) )
7 difexg 4808 . . . . . . . . . . 11  |-  ( B  e.  _V  ->  ( B  \  ran  f )  e.  _V )
87adantl 482 . . . . . . . . . 10  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( B  \  ran  f )  e.  _V )
9 snex 4908 . . . . . . . . . 10  |-  { ~P U.
ran  A }  e.  _V
10 xpexg 6960 . . . . . . . . . 10  |-  ( ( ( B  \  ran  f )  e.  _V  /\ 
{ ~P U. ran  A }  e.  _V )  ->  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
)  e.  _V )
118, 9, 10sylancl 694 . . . . . . . . 9  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } )  e.  _V )
12 fex2 7121 . . . . . . . . 9  |-  ( ( ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) : ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) --> ( B  \  ran  f )  /\  (
( B  \  ran  f )  X.  { ~P U. ran  A }
)  e.  _V  /\  ( B  \  ran  f
)  e.  _V )  ->  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) )  e.  _V )
136, 11, 8, 12syl3anc 1326 . . . . . . . 8  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) )  e.  _V )
14 unexg 6959 . . . . . . . 8  |-  ( ( f  e.  _V  /\  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A } ) )  e.  _V )  -> 
( f  u.  ( 1st  |`  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } ) ) )  e.  _V )
154, 13, 14sylancr 695 . . . . . . 7  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V )
16 cnvexg 7112 . . . . . . 7  |-  ( ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V  ->  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V )
1715, 16syl 17 . . . . . 6  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V )
18 rnexg 7098 . . . . . 6  |-  ( `' ( f  u.  ( 1st  |`  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } ) ) )  e.  _V  ->  ran  `' ( f  u.  ( 1st  |`  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } ) ) )  e.  _V )
1917, 18syl 17 . . . . 5  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ran  `' (
f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V )
20 simpl 473 . . . . . . . 8  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  f : A -1-1-> B )
21 f1dm 6105 . . . . . . . . . 10  |-  ( f : A -1-1-> B  ->  dom  f  =  A
)
224dmex 7099 . . . . . . . . . 10  |-  dom  f  e.  _V
2321, 22syl6eqelr 2710 . . . . . . . . 9  |-  ( f : A -1-1-> B  ->  A  e.  _V )
2423adantr 481 . . . . . . . 8  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  A  e.  _V )
25 simpr 477 . . . . . . . 8  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  B  e.  _V )
26 eqid 2622 . . . . . . . . 9  |-  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  =  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )
2726domss2 8119 . . . . . . . 8  |-  ( ( f : A -1-1-> B  /\  A  e.  _V  /\  B  e.  _V )  ->  ( `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) : B -1-1-onto-> ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  A  C_  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  ( `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  o.  f )  =  (  _I  |`  A )
) )
2820, 24, 25, 27syl3anc 1326 . . . . . . 7  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) : B -1-1-onto-> ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  A  C_  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  ( `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  o.  f )  =  (  _I  |`  A )
) )
2928simp2d 1074 . . . . . 6  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  A  C_  ran  `' ( f  u.  ( 1st  |`  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } ) ) ) )
3028simp1d 1073 . . . . . . 7  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) : B -1-1-onto-> ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) )
31 f1oen3g 7971 . . . . . . 7  |-  ( ( `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V  /\  `' (
f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) : B -1-1-onto-> ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) )  ->  B  ~~  ran  `' ( f  u.  ( 1st  |`  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } ) ) ) )
3217, 30, 31syl2anc 693 . . . . . 6  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  B  ~~  ran  `' ( f  u.  ( 1st  |`  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } ) ) ) )
3329, 32jca 554 . . . . 5  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( A  C_  ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  B  ~~  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) ) )
34 sseq2 3627 . . . . . . 7  |-  ( x  =  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  -> 
( A  C_  x  <->  A 
C_  ran  `' (
f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) ) )
35 breq2 4657 . . . . . . 7  |-  ( x  =  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  -> 
( B  ~~  x  <->  B 
~~  ran  `' (
f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) ) )
3634, 35anbi12d 747 . . . . . 6  |-  ( x  =  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  -> 
( ( A  C_  x  /\  B  ~~  x
)  <->  ( A  C_  ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  B  ~~  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) ) ) )
3736spcegv 3294 . . . . 5  |-  ( ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V  ->  ( ( A 
C_  ran  `' (
f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  B  ~~  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) )  ->  E. x ( A 
C_  x  /\  B  ~~  x ) ) )
3819, 33, 37sylc 65 . . . 4  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  E. x ( A 
C_  x  /\  B  ~~  x ) )
3938ex 450 . . 3  |-  ( f : A -1-1-> B  -> 
( B  e.  _V  ->  E. x ( A 
C_  x  /\  B  ~~  x ) ) )
4039exlimiv 1858 . 2  |-  ( E. f  f : A -1-1-> B  ->  ( B  e. 
_V  ->  E. x ( A 
C_  x  /\  B  ~~  x ) ) )
411, 3, 40sylc 65 1  |-  ( A  ~<_  B  ->  E. x
( A  C_  x  /\  B  ~~  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   ~Pcpw 4158   {csn 4177   U.cuni 4436   class class class wbr 4653    _I cid 5023    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116    o. ccom 5118   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   1stc1st 7166    ~~ cen 7952    ~<_ cdom 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1st 7168  df-2nd 7169  df-en 7956  df-dom 7957
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator