Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdmsscn Structured version   Visualization version   Unicode version

Theorem dvdmsscn 40151
Description:  X is a subset of  CC. This statement is very often used when computing derivatives. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvdmsscn.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvdmsscn.x  |-  ( ph  ->  X  e.  ( (
TopOpen ` fld )t  S ) )
Assertion
Ref Expression
dvdmsscn  |-  ( ph  ->  X  C_  CC )

Proof of Theorem dvdmsscn
StepHypRef Expression
1 restsspw 16092 . . . 4  |-  ( (
TopOpen ` fld )t  S )  C_  ~P S
2 dvdmsscn.x . . . 4  |-  ( ph  ->  X  e.  ( (
TopOpen ` fld )t  S ) )
31, 2sseldi 3601 . . 3  |-  ( ph  ->  X  e.  ~P S
)
4 elpwi 4168 . . 3  |-  ( X  e.  ~P S  ->  X  C_  S )
53, 4syl 17 . 2  |-  ( ph  ->  X  C_  S )
6 dvdmsscn.s . . 3  |-  ( ph  ->  S  e.  { RR ,  CC } )
7 recnprss 23668 . . 3  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
86, 7syl 17 . 2  |-  ( ph  ->  S  C_  CC )
95, 8sstrd 3613 1  |-  ( ph  ->  X  C_  CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   {cpr 4179   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   ↾t crest 16081   TopOpenctopn 16082  ℂfldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-rest 16083
This theorem is referenced by:  dvxpaek  40155  etransclem17  40468  etransclem18  40469  etransclem20  40471  etransclem21  40472  etransclem22  40473  etransclem29  40480  etransclem31  40482  etransclem34  40485  etransclem43  40494  etransclem46  40497
  Copyright terms: Public domain W3C validator