Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem18 Structured version   Visualization version   Unicode version

Theorem etransclem18 40469
Description: The given function is integrable. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem18.s  |-  ( ph  ->  RR  e.  { RR ,  CC } )
etransclem18.x  |-  ( ph  ->  RR  e.  ( (
TopOpen ` fld )t  RR ) )
etransclem18.p  |-  ( ph  ->  P  e.  NN )
etransclem18.m  |-  ( ph  ->  M  e.  NN0 )
etransclem18.f  |-  F  =  ( x  e.  RR  |->  ( ( x ^
( P  -  1 ) )  x.  prod_ j  e.  ( 1 ... M ) ( ( x  -  j ) ^ P ) ) )
etransclem18.a  |-  ( ph  ->  A  e.  RR )
etransclem18.b  |-  ( ph  ->  B  e.  RR )
Assertion
Ref Expression
etransclem18  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  ( ( _e  ^c  -u x )  x.  ( F `  x
) ) )  e.  L^1 )
Distinct variable groups:    x, A    x, B    j, M, x    P, j, x    ph, j, x
Allowed substitution hints:    A( j)    B( j)    F( x, j)

Proof of Theorem etransclem18
Dummy variables  k 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossicc 12259 . . 3  |-  ( A (,) B )  C_  ( A [,] B )
21a1i 11 . 2  |-  ( ph  ->  ( A (,) B
)  C_  ( A [,] B ) )
3 ioombl 23333 . . 3  |-  ( A (,) B )  e. 
dom  vol
43a1i 11 . 2  |-  ( ph  ->  ( A (,) B
)  e.  dom  vol )
5 ere 14819 . . . . . 6  |-  _e  e.  RR
65recni 10052 . . . . 5  |-  _e  e.  CC
76a1i 11 . . . 4  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  _e  e.  CC )
8 etransclem18.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
9 etransclem18.b . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
108, 9iccssred 39727 . . . . . . 7  |-  ( ph  ->  ( A [,] B
)  C_  RR )
1110sselda 3603 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  RR )
1211recnd 10068 . . . . 5  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  CC )
1312negcld 10379 . . . 4  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  -u x  e.  CC )
147, 13cxpcld 24454 . . 3  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( _e  ^c  -u x )  e.  CC )
15 etransclem18.s . . . . . . 7  |-  ( ph  ->  RR  e.  { RR ,  CC } )
16 etransclem18.x . . . . . . 7  |-  ( ph  ->  RR  e.  ( (
TopOpen ` fld )t  RR ) )
1715, 16dvdmsscn 40151 . . . . . 6  |-  ( ph  ->  RR  C_  CC )
18 etransclem18.p . . . . . 6  |-  ( ph  ->  P  e.  NN )
19 etransclem18.f . . . . . 6  |-  F  =  ( x  e.  RR  |->  ( ( x ^
( P  -  1 ) )  x.  prod_ j  e.  ( 1 ... M ) ( ( x  -  j ) ^ P ) ) )
2017, 18, 19etransclem8 40459 . . . . 5  |-  ( ph  ->  F : RR --> CC )
2120adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  F : RR
--> CC )
2221, 11ffvelrnd 6360 . . 3  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  CC )
2314, 22mulcld 10060 . 2  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( (
_e  ^c  -u x
)  x.  ( F `
 x ) )  e.  CC )
24 eqidd 2623 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( y  e.  CC  |->  ( _e  ^c  y ) )  =  ( y  e.  CC  |->  ( _e  ^c  y ) ) )
25 oveq2 6658 . . . . . . . . 9  |-  ( y  =  -u x  ->  (
_e  ^c  y )  =  ( _e  ^c  -u x ) )
2625adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  y  =  -u x )  -> 
( _e  ^c 
y )  =  ( _e  ^c  -u x ) )
2710, 17sstrd 3613 . . . . . . . . . 10  |-  ( ph  ->  ( A [,] B
)  C_  CC )
2827sselda 3603 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  CC )
2928negcld 10379 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  -u x  e.  CC )
306a1i 11 . . . . . . . . . 10  |-  ( x  e.  CC  ->  _e  e.  CC )
31 negcl 10281 . . . . . . . . . 10  |-  ( x  e.  CC  ->  -u x  e.  CC )
3230, 31cxpcld 24454 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
_e  ^c  -u x
)  e.  CC )
3328, 32syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( _e  ^c  -u x )  e.  CC )
3424, 26, 29, 33fvmptd 6288 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( (
y  e.  CC  |->  ( _e  ^c  y ) ) `  -u x
)  =  ( _e 
^c  -u x
) )
3534eqcomd 2628 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( _e  ^c  -u x )  =  ( ( y  e.  CC  |->  ( _e  ^c  y ) ) `
 -u x ) )
3635mpteq2dva 4744 . . . . 5  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( _e  ^c  -u x ) )  =  ( x  e.  ( A [,] B ) 
|->  ( ( y  e.  CC  |->  ( _e  ^c  y ) ) `
 -u x ) ) )
37 epr 14936 . . . . . . . . 9  |-  _e  e.  RR+
38 mnfxr 10096 . . . . . . . . . . 11  |- -oo  e.  RR*
3938a1i 11 . . . . . . . . . 10  |-  ( _e  e.  RR+  -> -oo  e.  RR* )
40 0red 10041 . . . . . . . . . 10  |-  ( _e  e.  RR+  ->  0  e.  RR )
41 rpxr 11840 . . . . . . . . . 10  |-  ( _e  e.  RR+  ->  _e  e.  RR* )
42 rpgt0 11844 . . . . . . . . . 10  |-  ( _e  e.  RR+  ->  0  < 
_e )
4339, 40, 41, 42gtnelioc 39712 . . . . . . . . 9  |-  ( _e  e.  RR+  ->  -.  _e  e.  ( -oo (,] 0
) )
4437, 43ax-mp 5 . . . . . . . 8  |-  -.  _e  e.  ( -oo (,] 0
)
45 eldif 3584 . . . . . . . 8  |-  ( _e  e.  ( CC  \ 
( -oo (,] 0 ) )  <->  ( _e  e.  CC  /\  -.  _e  e.  ( -oo (,] 0 ) ) )
466, 44, 45mpbir2an 955 . . . . . . 7  |-  _e  e.  ( CC  \  ( -oo (,] 0 ) )
47 cxpcncf2 40113 . . . . . . 7  |-  ( _e  e.  ( CC  \ 
( -oo (,] 0 ) )  ->  ( y  e.  CC  |->  ( _e  ^c  y ) )  e.  ( CC -cn-> CC ) )
4846, 47mp1i 13 . . . . . 6  |-  ( ph  ->  ( y  e.  CC  |->  ( _e  ^c 
y ) )  e.  ( CC -cn-> CC ) )
49 eqid 2622 . . . . . . . 8  |-  ( x  e.  ( A [,] B )  |->  -u x
)  =  ( x  e.  ( A [,] B )  |->  -u x
)
5049negcncf 22721 . . . . . . 7  |-  ( ( A [,] B ) 
C_  CC  ->  ( x  e.  ( A [,] B )  |->  -u x
)  e.  ( ( A [,] B )
-cn-> CC ) )
5127, 50syl 17 . . . . . 6  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  -u x )  e.  ( ( A [,] B ) -cn-> CC ) )
5248, 51cncfmpt1f 22716 . . . . 5  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( ( y  e.  CC  |->  ( _e  ^c  y ) ) `
 -u x ) )  e.  ( ( A [,] B ) -cn-> CC ) )
5336, 52eqeltrd 2701 . . . 4  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( _e  ^c  -u x ) )  e.  ( ( A [,] B ) -cn-> CC ) )
54 ax-resscn 9993 . . . . . . . 8  |-  RR  C_  CC
5554a1i 11 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  RR  C_  CC )
5618adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  P  e.  NN )
57 etransclem18.m . . . . . . . 8  |-  ( ph  ->  M  e.  NN0 )
5857adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  M  e.  NN0 )
59 etransclem6 40457 . . . . . . . 8  |-  ( x  e.  RR  |->  ( ( x ^ ( P  -  1 ) )  x.  prod_ j  e.  ( 1 ... M ) ( ( x  -  j ) ^ P
) ) )  =  ( y  e.  RR  |->  ( ( y ^
( P  -  1 ) )  x.  prod_ k  e.  ( 1 ... M ) ( ( y  -  k ) ^ P ) ) )
6019, 59eqtri 2644 . . . . . . 7  |-  F  =  ( y  e.  RR  |->  ( ( y ^
( P  -  1 ) )  x.  prod_ k  e.  ( 1 ... M ) ( ( y  -  k ) ^ P ) ) )
6155, 56, 58, 60, 11etransclem13 40464 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  =  prod_ k  e.  ( 0 ... M ) ( ( x  -  k ) ^ if ( k  =  0 ,  ( P  -  1 ) ,  P ) ) )
6261mpteq2dva 4744 . . . . 5  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( F `  x
) )  =  ( x  e.  ( A [,] B )  |->  prod_
k  e.  ( 0 ... M ) ( ( x  -  k
) ^ if ( k  =  0 ,  ( P  -  1 ) ,  P ) ) ) )
63 fzfid 12772 . . . . . 6  |-  ( ph  ->  ( 0 ... M
)  e.  Fin )
64123adant3 1081 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A [,] B )  /\  k  e.  ( 0 ... M ) )  ->  x  e.  CC )
65 elfzelz 12342 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... M )  ->  k  e.  ZZ )
6665zcnd 11483 . . . . . . . . 9  |-  ( k  e.  ( 0 ... M )  ->  k  e.  CC )
67663ad2ant3 1084 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A [,] B )  /\  k  e.  ( 0 ... M ) )  ->  k  e.  CC )
6864, 67subcld 10392 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B )  /\  k  e.  ( 0 ... M ) )  ->  ( x  -  k )  e.  CC )
69 nnm1nn0 11334 . . . . . . . . . 10  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
7018, 69syl 17 . . . . . . . . 9  |-  ( ph  ->  ( P  -  1 )  e.  NN0 )
7118nnnn0d 11351 . . . . . . . . 9  |-  ( ph  ->  P  e.  NN0 )
7270, 71ifcld 4131 . . . . . . . 8  |-  ( ph  ->  if ( k  =  0 ,  ( P  -  1 ) ,  P )  e.  NN0 )
73723ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B )  /\  k  e.  ( 0 ... M ) )  ->  if (
k  =  0 ,  ( P  -  1 ) ,  P )  e.  NN0 )
7468, 73expcld 13008 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B )  /\  k  e.  ( 0 ... M ) )  ->  ( (
x  -  k ) ^ if ( k  =  0 ,  ( P  -  1 ) ,  P ) )  e.  CC )
75 nfv 1843 . . . . . . 7  |-  F/ x
( ph  /\  k  e.  ( 0 ... M
) )
76 ssid 3624 . . . . . . . . . . 11  |-  CC  C_  CC
7776a1i 11 . . . . . . . . . 10  |-  ( ph  ->  CC  C_  CC )
7827, 77idcncfg 40085 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  x )  e.  ( ( A [,] B
) -cn-> CC ) )
7978adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... M
) )  ->  (
x  e.  ( A [,] B )  |->  x )  e.  ( ( A [,] B )
-cn-> CC ) )
8027adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... M
) )  ->  ( A [,] B )  C_  CC )
8166adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... M
) )  ->  k  e.  CC )
8276a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... M
) )  ->  CC  C_  CC )
8380, 81, 82constcncfg 40084 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... M
) )  ->  (
x  e.  ( A [,] B )  |->  k )  e.  ( ( A [,] B )
-cn-> CC ) )
8479, 83subcncf 40082 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... M
) )  ->  (
x  e.  ( A [,] B )  |->  ( x  -  k ) )  e.  ( ( A [,] B )
-cn-> CC ) )
85 expcncf 22725 . . . . . . . . 9  |-  ( if ( k  =  0 ,  ( P  - 
1 ) ,  P
)  e.  NN0  ->  ( y  e.  CC  |->  ( y ^ if ( k  =  0 ,  ( P  -  1 ) ,  P ) ) )  e.  ( CC -cn-> CC ) )
8672, 85syl 17 . . . . . . . 8  |-  ( ph  ->  ( y  e.  CC  |->  ( y ^ if ( k  =  0 ,  ( P  - 
1 ) ,  P
) ) )  e.  ( CC -cn-> CC ) )
8786adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... M
) )  ->  (
y  e.  CC  |->  ( y ^ if ( k  =  0 ,  ( P  -  1 ) ,  P ) ) )  e.  ( CC -cn-> CC ) )
88 oveq1 6657 . . . . . . 7  |-  ( y  =  ( x  -  k )  ->  (
y ^ if ( k  =  0 ,  ( P  -  1 ) ,  P ) )  =  ( ( x  -  k ) ^ if ( k  =  0 ,  ( P  -  1 ) ,  P ) ) )
8975, 84, 87, 82, 88cncfcompt2 40112 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... M
) )  ->  (
x  e.  ( A [,] B )  |->  ( ( x  -  k
) ^ if ( k  =  0 ,  ( P  -  1 ) ,  P ) ) )  e.  ( ( A [,] B
) -cn-> CC ) )
9027, 63, 74, 89fprodcncf 40114 . . . . 5  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  prod_ k  e.  ( 0 ... M ) ( ( x  -  k ) ^ if ( k  =  0 ,  ( P  - 
1 ) ,  P
) ) )  e.  ( ( A [,] B ) -cn-> CC ) )
9162, 90eqeltrd 2701 . . . 4  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( F `  x
) )  e.  ( ( A [,] B
) -cn-> CC ) )
9253, 91mulcncf 23215 . . 3  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( ( _e  ^c  -u x )  x.  ( F `  x
) ) )  e.  ( ( A [,] B ) -cn-> CC ) )
93 cniccibl 23607 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
x  e.  ( A [,] B )  |->  ( ( _e  ^c  -u x )  x.  ( F `  x )
) )  e.  ( ( A [,] B
) -cn-> CC ) )  -> 
( x  e.  ( A [,] B ) 
|->  ( ( _e  ^c  -u x )  x.  ( F `  x
) ) )  e.  L^1 )
948, 9, 92, 93syl3anc 1326 . 2  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( ( _e  ^c  -u x )  x.  ( F `  x
) ) )  e.  L^1 )
952, 4, 23, 94iblss 23571 1  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  ( ( _e  ^c  -u x )  x.  ( F `  x
) ) )  e.  L^1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    \ cdif 3571    C_ wss 3574   ifcif 4086   {cpr 4179    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941   -oocmnf 10072   RR*cxr 10073    - cmin 10266   -ucneg 10267   NNcn 11020   NN0cn0 11292   RR+crp 11832   (,)cioo 12175   (,]cioc 12176   [,]cicc 12178   ...cfz 12326   ^cexp 12860   prod_cprod 14635   _eceu 14793   ↾t crest 16081   TopOpenctopn 16082  ℂfldccnfld 19746   -cn->ccncf 22679   volcvol 23232   L^1cibl 23386    ^c ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-0p 23437  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  etransclem23  40474  etransclem46  40497
  Copyright terms: Public domain W3C validator