Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baselcarsg Structured version   Visualization version   Unicode version

Theorem baselcarsg 30368
Description: The universe set,  O, is Caratheodory measurable. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1  |-  ( ph  ->  O  e.  V )
carsgval.2  |-  ( ph  ->  M : ~P O --> ( 0 [,] +oo ) )
baselcarsg.1  |-  ( ph  ->  ( M `  (/) )  =  0 )
Assertion
Ref Expression
baselcarsg  |-  ( ph  ->  O  e.  (toCaraSiga `  M
) )

Proof of Theorem baselcarsg
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 ssid 3624 . . . 4  |-  O  C_  O
21a1i 11 . . 3  |-  ( ph  ->  O  C_  O )
3 elpwi 4168 . . . . . . . . 9  |-  ( e  e.  ~P O  -> 
e  C_  O )
43adantl 482 . . . . . . . 8  |-  ( (
ph  /\  e  e.  ~P O )  ->  e  C_  O )
5 df-ss 3588 . . . . . . . 8  |-  ( e 
C_  O  <->  ( e  i^i  O )  =  e )
64, 5sylib 208 . . . . . . 7  |-  ( (
ph  /\  e  e.  ~P O )  ->  (
e  i^i  O )  =  e )
76fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  e  e.  ~P O )  ->  ( M `  ( e  i^i  O ) )  =  ( M `  e
) )
8 ssdif0 3942 . . . . . . . . 9  |-  ( e 
C_  O  <->  ( e  \  O )  =  (/) )
94, 8sylib 208 . . . . . . . 8  |-  ( (
ph  /\  e  e.  ~P O )  ->  (
e  \  O )  =  (/) )
109fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  e  e.  ~P O )  ->  ( M `  ( e  \  O ) )  =  ( M `  (/) ) )
11 baselcarsg.1 . . . . . . . 8  |-  ( ph  ->  ( M `  (/) )  =  0 )
1211adantr 481 . . . . . . 7  |-  ( (
ph  /\  e  e.  ~P O )  ->  ( M `  (/) )  =  0 )
1310, 12eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  e  e.  ~P O )  ->  ( M `  ( e  \  O ) )  =  0 )
147, 13oveq12d 6668 . . . . 5  |-  ( (
ph  /\  e  e.  ~P O )  ->  (
( M `  (
e  i^i  O )
) +e ( M `  ( e 
\  O ) ) )  =  ( ( M `  e ) +e 0 ) )
15 iccssxr 12256 . . . . . . 7  |-  ( 0 [,] +oo )  C_  RR*
16 carsgval.2 . . . . . . . . 9  |-  ( ph  ->  M : ~P O --> ( 0 [,] +oo ) )
1716adantr 481 . . . . . . . 8  |-  ( (
ph  /\  e  e.  ~P O )  ->  M : ~P O --> ( 0 [,] +oo ) )
18 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  e  e.  ~P O )  ->  e  e.  ~P O )
1917, 18ffvelrnd 6360 . . . . . . 7  |-  ( (
ph  /\  e  e.  ~P O )  ->  ( M `  e )  e.  ( 0 [,] +oo ) )
2015, 19sseldi 3601 . . . . . 6  |-  ( (
ph  /\  e  e.  ~P O )  ->  ( M `  e )  e.  RR* )
21 xaddid1 12072 . . . . . 6  |-  ( ( M `  e )  e.  RR*  ->  ( ( M `  e ) +e 0 )  =  ( M `  e ) )
2220, 21syl 17 . . . . 5  |-  ( (
ph  /\  e  e.  ~P O )  ->  (
( M `  e
) +e 0 )  =  ( M `
 e ) )
2314, 22eqtrd 2656 . . . 4  |-  ( (
ph  /\  e  e.  ~P O )  ->  (
( M `  (
e  i^i  O )
) +e ( M `  ( e 
\  O ) ) )  =  ( M `
 e ) )
2423ralrimiva 2966 . . 3  |-  ( ph  ->  A. e  e.  ~P  O ( ( M `
 ( e  i^i 
O ) ) +e ( M `  ( e  \  O
) ) )  =  ( M `  e
) )
252, 24jca 554 . 2  |-  ( ph  ->  ( O  C_  O  /\  A. e  e.  ~P  O ( ( M `
 ( e  i^i 
O ) ) +e ( M `  ( e  \  O
) ) )  =  ( M `  e
) ) )
26 carsgval.1 . . 3  |-  ( ph  ->  O  e.  V )
2726, 16elcarsg 30367 . 2  |-  ( ph  ->  ( O  e.  (toCaraSiga `  M )  <->  ( O  C_  O  /\  A. e  e.  ~P  O ( ( M `  ( e  i^i  O ) ) +e ( M `
 ( e  \  O ) ) )  =  ( M `  e ) ) ) )
2825, 27mpbird 247 1  |-  ( ph  ->  O  e.  (toCaraSiga `  M
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   +oocpnf 10071   RR*cxr 10073   +ecxad 11944   [,]cicc 12178  toCaraSigaccarsg 30363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-xadd 11947  df-icc 12182  df-carsg 30364
This theorem is referenced by:  carsguni  30370  fiunelcarsg  30378  carsgsiga  30384
  Copyright terms: Public domain W3C validator