| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliccelico | Structured version Visualization version Unicode version | ||
| Description: Relate elementhood to a closed interval with elementhood to the same closed-below, open-above interval or to its upper bound. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
| Ref | Expression |
|---|---|
| eliccelico |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1064 |
. . . . . 6
| |
| 2 | simpl2 1065 |
. . . . . 6
| |
| 3 | simprl 794 |
. . . . . 6
| |
| 4 | elicc1 12219 |
. . . . . . . 8
| |
| 5 | 4 | biimpa 501 |
. . . . . . 7
|
| 6 | 5 | simp1d 1073 |
. . . . . 6
|
| 7 | 1, 2, 3, 6 | syl21anc 1325 |
. . . . 5
|
| 8 | 5 | simp3d 1075 |
. . . . . 6
|
| 9 | 1, 2, 3, 8 | syl21anc 1325 |
. . . . 5
|
| 10 | 1, 2 | jca 554 |
. . . . . 6
|
| 11 | simprr 796 |
. . . . . 6
| |
| 12 | 5 | simp2d 1074 |
. . . . . . 7
|
| 13 | 10, 3, 12 | syl2anc 693 |
. . . . . 6
|
| 14 | elico1 12218 |
. . . . . . . . . 10
| |
| 15 | 14 | notbid 308 |
. . . . . . . . 9
|
| 16 | 15 | biimpa 501 |
. . . . . . . 8
|
| 17 | df-3an 1039 |
. . . . . . . . . 10
| |
| 18 | 17 | notbii 310 |
. . . . . . . . 9
|
| 19 | imnan 438 |
. . . . . . . . 9
| |
| 20 | 18, 19 | bitr4i 267 |
. . . . . . . 8
|
| 21 | 16, 20 | sylib 208 |
. . . . . . 7
|
| 22 | 21 | imp 445 |
. . . . . 6
|
| 23 | 10, 11, 7, 13, 22 | syl22anc 1327 |
. . . . 5
|
| 24 | xeqlelt 29538 |
. . . . . 6
| |
| 25 | 24 | biimpar 502 |
. . . . 5
|
| 26 | 7, 2, 9, 23, 25 | syl22anc 1327 |
. . . 4
|
| 27 | 26 | ex 450 |
. . 3
|
| 28 | pm5.6 951 |
. . 3
| |
| 29 | 27, 28 | sylib 208 |
. 2
|
| 30 | icossicc 12260 |
. . . . 5
| |
| 31 | simpr 477 |
. . . . 5
| |
| 32 | 30, 31 | sseldi 3601 |
. . . 4
|
| 33 | simpr 477 |
. . . . . 6
| |
| 34 | simpl2 1065 |
. . . . . 6
| |
| 35 | 33, 34 | eqeltrd 2701 |
. . . . 5
|
| 36 | simpl3 1066 |
. . . . . 6
| |
| 37 | 36, 33 | breqtrrd 4681 |
. . . . 5
|
| 38 | xrleid 11983 |
. . . . . . 7
| |
| 39 | 34, 38 | syl 17 |
. . . . . 6
|
| 40 | 33, 39 | eqbrtrd 4675 |
. . . . 5
|
| 41 | simpl1 1064 |
. . . . . 6
| |
| 42 | 41, 34, 4 | syl2anc 693 |
. . . . 5
|
| 43 | 35, 37, 40, 42 | mpbir3and 1245 |
. . . 4
|
| 44 | 32, 43 | jaodan 826 |
. . 3
|
| 45 | 44 | ex 450 |
. 2
|
| 46 | 29, 45 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-ico 12181 df-icc 12182 |
| This theorem is referenced by: xrge0adddir 29692 esumcvg 30148 |
| Copyright terms: Public domain | W3C validator |