Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0adddir Structured version   Visualization version   Unicode version

Theorem xrge0adddir 29692
Description: Right-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 30-Jun-2017.)
Assertion
Ref Expression
xrge0adddir  |-  ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  ( 0 [,] +oo ) )  ->  ( ( A +e B ) xe C )  =  ( ( A xe C ) +e ( B xe C ) ) )

Proof of Theorem xrge0adddir
StepHypRef Expression
1 iccssxr 12256 . . . 4  |-  ( 0 [,] +oo )  C_  RR*
2 simpl1 1064 . . . 4  |-  ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  (
0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  e.  ( 0 [,) +oo ) )  ->  A  e.  ( 0 [,] +oo ) )
31, 2sseldi 3601 . . 3  |-  ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  (
0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  e.  ( 0 [,) +oo ) )  ->  A  e.  RR* )
4 simpl2 1065 . . . 4  |-  ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  (
0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  e.  ( 0 [,) +oo ) )  ->  B  e.  ( 0 [,] +oo ) )
51, 4sseldi 3601 . . 3  |-  ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  (
0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  e.  ( 0 [,) +oo ) )  ->  B  e.  RR* )
6 rge0ssre 12280 . . . 4  |-  ( 0 [,) +oo )  C_  RR
7 simpr 477 . . . 4  |-  ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  (
0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  e.  ( 0 [,) +oo ) )  ->  C  e.  ( 0 [,) +oo ) )
86, 7sseldi 3601 . . 3  |-  ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  (
0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  e.  ( 0 [,) +oo ) )  ->  C  e.  RR )
9 xadddir 12126 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  (
( A +e
B ) xe C )  =  ( ( A xe C ) +e
( B xe C ) ) )
103, 5, 8, 9syl3anc 1326 . 2  |-  ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  (
0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  e.  ( 0 [,) +oo ) )  ->  (
( A +e
B ) xe C )  =  ( ( A xe C ) +e
( B xe C ) ) )
11 simpll1 1100 . . . . . . . 8  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  A  e.  ( 0 [,] +oo ) )
121, 11sseldi 3601 . . . . . . 7  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  A  e.  RR* )
13 simpll2 1101 . . . . . . . 8  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  B  e.  ( 0 [,] +oo ) )
141, 13sseldi 3601 . . . . . . 7  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  B  e.  RR* )
1512, 14xaddcld 12131 . . . . . 6  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  ( A +e B )  e.  RR* )
16 simpr 477 . . . . . . 7  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  0  <  A )
17 xrge0addgt0 29691 . . . . . . 7  |-  ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  (
0 [,] +oo )
)  /\  0  <  A )  ->  0  <  ( A +e B ) )
1811, 13, 16, 17syl21anc 1325 . . . . . 6  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  0  <  ( A +e
B ) )
19 xmulpnf1 12104 . . . . . 6  |-  ( ( ( A +e
B )  e.  RR*  /\  0  <  ( A +e B ) )  ->  ( ( A +e B ) xe +oo )  = +oo )
2015, 18, 19syl2anc 693 . . . . 5  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  (
( A +e
B ) xe +oo )  = +oo )
21 oveq2 6658 . . . . . 6  |-  ( C  = +oo  ->  (
( A +e
B ) xe C )  =  ( ( A +e
B ) xe +oo ) )
2221ad2antlr 763 . . . . 5  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  (
( A +e
B ) xe C )  =  ( ( A +e
B ) xe +oo ) )
23 simpll3 1102 . . . . . . . 8  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  C  e.  ( 0 [,] +oo ) )
24 ge0xmulcl 12287 . . . . . . . 8  |-  ( ( B  e.  ( 0 [,] +oo )  /\  C  e.  ( 0 [,] +oo ) )  ->  ( B xe C )  e.  ( 0 [,] +oo ) )
2513, 23, 24syl2anc 693 . . . . . . 7  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  ( B xe C )  e.  ( 0 [,] +oo ) )
261, 25sseldi 3601 . . . . . 6  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  ( B xe C )  e.  RR* )
27 xrge0neqmnf 12276 . . . . . . 7  |-  ( ( B xe C )  e.  ( 0 [,] +oo )  -> 
( B xe C )  =/= -oo )
2825, 27syl 17 . . . . . 6  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  ( B xe C )  =/= -oo )
29 xaddpnf2 12058 . . . . . 6  |-  ( ( ( B xe C )  e.  RR*  /\  ( B xe C )  =/= -oo )  ->  ( +oo +e ( B xe C ) )  = +oo )
3026, 28, 29syl2anc 693 . . . . 5  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  ( +oo +e ( B xe C ) )  = +oo )
3120, 22, 303eqtr4d 2666 . . . 4  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  (
( A +e
B ) xe C )  =  ( +oo +e ( B xe C ) ) )
32 oveq2 6658 . . . . . . 7  |-  ( C  = +oo  ->  ( A xe C )  =  ( A xe +oo ) )
3332ad2antlr 763 . . . . . 6  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  ( A xe C )  =  ( A xe +oo ) )
34 xmulpnf1 12104 . . . . . . 7  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  ( A xe +oo )  = +oo )
3512, 16, 34syl2anc 693 . . . . . 6  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  ( A xe +oo )  = +oo )
3633, 35eqtrd 2656 . . . . 5  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  ( A xe C )  = +oo )
3736oveq1d 6665 . . . 4  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  (
( A xe C ) +e
( B xe C ) )  =  ( +oo +e
( B xe C ) ) )
3831, 37eqtr4d 2659 . . 3  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  <  A )  ->  (
( A +e
B ) xe C )  =  ( ( A xe C ) +e
( B xe C ) ) )
39 simpll3 1102 . . . . . . . 8  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  =  A )  ->  C  e.  ( 0 [,] +oo ) )
401, 39sseldi 3601 . . . . . . 7  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  =  A )  ->  C  e.  RR* )
41 xmul02 12098 . . . . . . 7  |-  ( C  e.  RR*  ->  ( 0 xe C )  =  0 )
4240, 41syl 17 . . . . . 6  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  =  A )  ->  (
0 xe C )  =  0 )
4342oveq1d 6665 . . . . 5  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  =  A )  ->  (
( 0 xe C ) +e
( B xe C ) )  =  ( 0 +e
( B xe C ) ) )
44 oveq1 6657 . . . . . . 7  |-  ( 0  =  A  ->  (
0 xe C )  =  ( A xe C ) )
4544adantl 482 . . . . . 6  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  =  A )  ->  (
0 xe C )  =  ( A xe C ) )
4645oveq1d 6665 . . . . 5  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  =  A )  ->  (
( 0 xe C ) +e
( B xe C ) )  =  ( ( A xe C ) +e ( B xe C ) ) )
47 simpll2 1101 . . . . . . . 8  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  =  A )  ->  B  e.  ( 0 [,] +oo ) )
481, 47sseldi 3601 . . . . . . 7  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  =  A )  ->  B  e.  RR* )
4948, 40xmulcld 12132 . . . . . 6  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  =  A )  ->  ( B xe C )  e.  RR* )
50 xaddid2 12073 . . . . . 6  |-  ( ( B xe C )  e.  RR*  ->  ( 0 +e ( B xe C ) )  =  ( B xe C ) )
5149, 50syl 17 . . . . 5  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  =  A )  ->  (
0 +e ( B xe C ) )  =  ( B xe C ) )
5243, 46, 513eqtr3d 2664 . . . 4  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  =  A )  ->  (
( A xe C ) +e
( B xe C ) )  =  ( B xe C ) )
53 xaddid2 12073 . . . . . 6  |-  ( B  e.  RR*  ->  ( 0 +e B )  =  B )
5448, 53syl 17 . . . . 5  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  =  A )  ->  (
0 +e B )  =  B )
5554oveq1d 6665 . . . 4  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  =  A )  ->  (
( 0 +e
B ) xe C )  =  ( B xe C ) )
56 oveq1 6657 . . . . . 6  |-  ( 0  =  A  ->  (
0 +e B )  =  ( A +e B ) )
5756oveq1d 6665 . . . . 5  |-  ( 0  =  A  ->  (
( 0 +e
B ) xe C )  =  ( ( A +e
B ) xe C ) )
5857adantl 482 . . . 4  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  =  A )  ->  (
( 0 +e
B ) xe C )  =  ( ( A +e
B ) xe C ) )
5952, 55, 583eqtr2rd 2663 . . 3  |-  ( ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  /\  0  =  A )  ->  (
( A +e
B ) xe C )  =  ( ( A xe C ) +e
( B xe C ) ) )
60 0xr 10086 . . . . 5  |-  0  e.  RR*
6160a1i 11 . . . 4  |-  ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  (
0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  ->  0  e. 
RR* )
62 simpl1 1064 . . . . 5  |-  ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  (
0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  ->  A  e.  ( 0 [,] +oo ) )
631, 62sseldi 3601 . . . 4  |-  ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  (
0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  ->  A  e. 
RR* )
64 pnfxr 10092 . . . . . 6  |- +oo  e.  RR*
6564a1i 11 . . . . 5  |-  ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  (
0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  -> +oo  e.  RR* )
66 iccgelb 12230 . . . . 5  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  A  e.  ( 0 [,] +oo ) )  ->  0  <_  A )
6761, 65, 62, 66syl3anc 1326 . . . 4  |-  ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  (
0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  ->  0  <_  A )
68 xrleloe 11977 . . . . 5  |-  ( ( 0  e.  RR*  /\  A  e.  RR* )  ->  (
0  <_  A  <->  ( 0  <  A  \/  0  =  A ) ) )
6968biimpa 501 . . . 4  |-  ( ( ( 0  e.  RR*  /\  A  e.  RR* )  /\  0  <_  A )  ->  ( 0  < 
A  \/  0  =  A ) )
7061, 63, 67, 69syl21anc 1325 . . 3  |-  ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  (
0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  ->  ( 0  <  A  \/  0  =  A ) )
7138, 59, 70mpjaodan 827 . 2  |-  ( ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  (
0 [,] +oo )  /\  C  e.  (
0 [,] +oo )
)  /\  C  = +oo )  ->  ( ( A +e B ) xe C )  =  ( ( A xe C ) +e ( B xe C ) ) )
72 0lepnf 11966 . . . . 5  |-  0  <_ +oo
73 eliccelico 29539 . . . . 5  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  0  <_ +oo )  ->  ( C  e.  ( 0 [,] +oo )  <->  ( C  e.  ( 0 [,) +oo )  \/  C  = +oo ) ) )
7460, 64, 72, 73mp3an 1424 . . . 4  |-  ( C  e.  ( 0 [,] +oo )  <->  ( C  e.  ( 0 [,) +oo )  \/  C  = +oo ) )
75743anbi3i 1255 . . 3  |-  ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  ( 0 [,] +oo ) )  <-> 
( A  e.  ( 0 [,] +oo )  /\  B  e.  (
0 [,] +oo )  /\  ( C  e.  ( 0 [,) +oo )  \/  C  = +oo ) ) )
7675simp3bi 1078 . 2  |-  ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  ( 0 [,] +oo ) )  ->  ( C  e.  ( 0 [,) +oo )  \/  C  = +oo ) )
7710, 71, 76mpjaodan 827 1  |-  ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo )  /\  C  e.  ( 0 [,] +oo ) )  ->  ( ( A +e B ) xe C )  =  ( ( A xe C ) +e ( B xe C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653  (class class class)co 6650   RRcr 9935   0cc0 9936   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075   +ecxad 11944   xecxmu 11945   [,)cico 12177   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182
This theorem is referenced by:  xrge0adddi  29693  xrge0slmod  29844  esummulc1  30143
  Copyright terms: Public domain W3C validator