| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0adddir | Structured version Visualization version Unicode version | ||
| Description: Right-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 30-Jun-2017.) |
| Ref | Expression |
|---|---|
| xrge0adddir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssxr 12256 |
. . . 4
| |
| 2 | simpl1 1064 |
. . . 4
| |
| 3 | 1, 2 | sseldi 3601 |
. . 3
|
| 4 | simpl2 1065 |
. . . 4
| |
| 5 | 1, 4 | sseldi 3601 |
. . 3
|
| 6 | rge0ssre 12280 |
. . . 4
| |
| 7 | simpr 477 |
. . . 4
| |
| 8 | 6, 7 | sseldi 3601 |
. . 3
|
| 9 | xadddir 12126 |
. . 3
| |
| 10 | 3, 5, 8, 9 | syl3anc 1326 |
. 2
|
| 11 | simpll1 1100 |
. . . . . . . 8
| |
| 12 | 1, 11 | sseldi 3601 |
. . . . . . 7
|
| 13 | simpll2 1101 |
. . . . . . . 8
| |
| 14 | 1, 13 | sseldi 3601 |
. . . . . . 7
|
| 15 | 12, 14 | xaddcld 12131 |
. . . . . 6
|
| 16 | simpr 477 |
. . . . . . 7
| |
| 17 | xrge0addgt0 29691 |
. . . . . . 7
| |
| 18 | 11, 13, 16, 17 | syl21anc 1325 |
. . . . . 6
|
| 19 | xmulpnf1 12104 |
. . . . . 6
| |
| 20 | 15, 18, 19 | syl2anc 693 |
. . . . 5
|
| 21 | oveq2 6658 |
. . . . . 6
| |
| 22 | 21 | ad2antlr 763 |
. . . . 5
|
| 23 | simpll3 1102 |
. . . . . . . 8
| |
| 24 | ge0xmulcl 12287 |
. . . . . . . 8
| |
| 25 | 13, 23, 24 | syl2anc 693 |
. . . . . . 7
|
| 26 | 1, 25 | sseldi 3601 |
. . . . . 6
|
| 27 | xrge0neqmnf 12276 |
. . . . . . 7
| |
| 28 | 25, 27 | syl 17 |
. . . . . 6
|
| 29 | xaddpnf2 12058 |
. . . . . 6
| |
| 30 | 26, 28, 29 | syl2anc 693 |
. . . . 5
|
| 31 | 20, 22, 30 | 3eqtr4d 2666 |
. . . 4
|
| 32 | oveq2 6658 |
. . . . . . 7
| |
| 33 | 32 | ad2antlr 763 |
. . . . . 6
|
| 34 | xmulpnf1 12104 |
. . . . . . 7
| |
| 35 | 12, 16, 34 | syl2anc 693 |
. . . . . 6
|
| 36 | 33, 35 | eqtrd 2656 |
. . . . 5
|
| 37 | 36 | oveq1d 6665 |
. . . 4
|
| 38 | 31, 37 | eqtr4d 2659 |
. . 3
|
| 39 | simpll3 1102 |
. . . . . . . 8
| |
| 40 | 1, 39 | sseldi 3601 |
. . . . . . 7
|
| 41 | xmul02 12098 |
. . . . . . 7
| |
| 42 | 40, 41 | syl 17 |
. . . . . 6
|
| 43 | 42 | oveq1d 6665 |
. . . . 5
|
| 44 | oveq1 6657 |
. . . . . . 7
| |
| 45 | 44 | adantl 482 |
. . . . . 6
|
| 46 | 45 | oveq1d 6665 |
. . . . 5
|
| 47 | simpll2 1101 |
. . . . . . . 8
| |
| 48 | 1, 47 | sseldi 3601 |
. . . . . . 7
|
| 49 | 48, 40 | xmulcld 12132 |
. . . . . 6
|
| 50 | xaddid2 12073 |
. . . . . 6
| |
| 51 | 49, 50 | syl 17 |
. . . . 5
|
| 52 | 43, 46, 51 | 3eqtr3d 2664 |
. . . 4
|
| 53 | xaddid2 12073 |
. . . . . 6
| |
| 54 | 48, 53 | syl 17 |
. . . . 5
|
| 55 | 54 | oveq1d 6665 |
. . . 4
|
| 56 | oveq1 6657 |
. . . . . 6
| |
| 57 | 56 | oveq1d 6665 |
. . . . 5
|
| 58 | 57 | adantl 482 |
. . . 4
|
| 59 | 52, 55, 58 | 3eqtr2rd 2663 |
. . 3
|
| 60 | 0xr 10086 |
. . . . 5
| |
| 61 | 60 | a1i 11 |
. . . 4
|
| 62 | simpl1 1064 |
. . . . 5
| |
| 63 | 1, 62 | sseldi 3601 |
. . . 4
|
| 64 | pnfxr 10092 |
. . . . . 6
| |
| 65 | 64 | a1i 11 |
. . . . 5
|
| 66 | iccgelb 12230 |
. . . . 5
| |
| 67 | 61, 65, 62, 66 | syl3anc 1326 |
. . . 4
|
| 68 | xrleloe 11977 |
. . . . 5
| |
| 69 | 68 | biimpa 501 |
. . . 4
|
| 70 | 61, 63, 67, 69 | syl21anc 1325 |
. . 3
|
| 71 | 38, 59, 70 | mpjaodan 827 |
. 2
|
| 72 | 0lepnf 11966 |
. . . . 5
| |
| 73 | eliccelico 29539 |
. . . . 5
| |
| 74 | 60, 64, 72, 73 | mp3an 1424 |
. . . 4
|
| 75 | 74 | 3anbi3i 1255 |
. . 3
|
| 76 | 75 | simp3bi 1078 |
. 2
|
| 77 | 10, 71, 76 | mpjaodan 827 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ico 12181 df-icc 12182 |
| This theorem is referenced by: xrge0adddi 29693 xrge0slmod 29844 esummulc1 30143 |
| Copyright terms: Public domain | W3C validator |